Remote Renewable Hubs for Carbon-Neutral Fuel Production

Decarbonising sectors such as aviation, heating and industry has proved difficult via direct electrification. Hence, the synthesis of carbon-neutral fuels and feedstocks from renewable electricity has received much attention in recent years. However, in European countries such as Belgium, the theoretical amount of renewable electricity that may be produced is known to be insufficient to supply current energy demand levels, which is compounded by problems of social acceptance of renewable energy and infrastructure projects. In addition, the economics of renewable electricity production directly depend on the quality of the underlying resource, and very-high-quality resources are abundant in remote regions such Patagonia, Greenland and North Africa. The idea of synthesising renewable fuels there and transporting them back to demand centres has therefore been proposed. This paper introduces a novel optimisation modelling framework to study the economics and efficiency of such remote renewable energy supply chains in an integrated, spatially and temporally-resolved fashion [URL Paper]. The framework has also served as a basis for the development of an open source optimisation modelling language [URL Tutorial Modelling Language] and tool [URL Gitlab Repository], which facilitate problem encoding and post-processing, promote model re-use and improve portability. In the paper, the framework and tool are leveraged to study the synthesis of carbon-neutral methane from solar and wind energy in North Africa and its export to Northwestern Europe. Results suggest that the cost of synthetic methane production and delivery would be slightly under 200 EUR/MWh and 150 EUR/MWh by 2030 for a system supplying 100 TWh (higher heating value) annually that relies on solar photovoltaic plants alone and a combination of solar photovoltaic and wind power plants, respectively, assuming a uniform weighted average cost of capital of 7%. The cost difference between these system configurations mostly stems from higher investments in technologies providing flexibility required to balance the system in the solar-driven configuration. Synthetic methane costs would drop to roughly 124 EUR/MWh and 87 EUR/MWh, respectively, if financing costs were zero and only technology costs were taken into account.

URL Paper: http://hdl.handle.net/2268/250796

URL Tutorial Modelling Language: http://hdl.handle.net/2268/256705

URL Gitlab Repository: https://gitlab.uliege.be/smart_grids/public/gboml

 

 


Comments

3 responses to “Remote Renewable Hubs for Carbon-Neutral Fuel Production”

  1. Hydrogen…
    What is the roundtrip effeciency of the electrolysis / fuel cell processes?. 30%

    30% from the PV kwhr, which is itself 22%(at best) of incident light energy.

    Total 7% at best. Is this our future ?.

    What is roundtrip effeciency of the pump / generator pumping station processes?.

    80% from the PV Kwhr !
    and a much lower TCO over a very long period (cfr COO in Belgium).

    Like

  2. Ralf Thee Avatar
    Ralf Thee

    A study in 2020 from Frontier Economics compares the LCA efficiency from ICE and battery electric cars. The different is small to nothing ICE 10-13% and Battery 13-16%. So we can move on now and evaluate other factors then efficiency.

    Like

  3. Alleen ernaar streven om die inhoud te noemen, kan zo ongelooflijk zijn. Deze duidelijkheid met je bericht is fantastisch en ik denk misschien dat je een goeroe bent voor dit probleem. Hoge kwaliteit en uw instemming staan ??mij toe om uw huidige gift te grijpen om aangepast te blijven door naderende blogpost te gebruiken. Heel erg bedankt, honderden samen met jullie zouden het plezierige moeten doen om de klus te klaren.

    Like

Leave a comment

Blog at WordPress.com.