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Reinforcement learning: problem statement

and challenges



Artificial autonomous intelligent agent: formal definition

Definition (Agent)

An agent is anything that is capable of acting upon information it perceives.

Definition (Intelligent agent)

An intelligent agent is an agent capable of making decisions about how it acts

based on experience, that is of learning decision from experience.

Definition (Autonomous intelligent agent)

An autonomous intelligent agent is an intelligent agent that is free to choose

between different actions.

2/82



Definition (Artificial autonomous intelligent agent)

An artificial autonomous intelligent agent is anything we create that is capable

of actions based on information it perceives, its own experience, and its own

decisions about which actions to perform.

Since “artificial autonomous intelligent agent” is quite mouthful, we follow the

convention of using “intelligent agent” or “autonomous agent” for short.
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Application of intelligent agents

Intelligent agents are applied in a variety of areas: project management,

electronic commerce, robotics, information retrieval, military, networking,

planning and scheduling, etc.

Examples:

• A predictive maintenance agent for industrial equipment that analyzes

sensor data to predict failures before they happen, scheduling maintenance

only when needed and reducing downtime and costs Leroy et al. [2023].

• An autonomous delivery drone system that optimizes delivery routes and

times based on traffic, weather conditions, and customer availability,

learning from each delivery to improve efficiency and customer satisfaction.

• An alignment agent fine-tunes LLMs like ChatGPT, to better match user

intentions. It learns from feedback to improve question interpretation and

ensure accurate, relevant responses. See lecture 11 on RL and LLMs.

• A robotic harvesting assistant that navigates through orchards, using visual

recognition to identify ripe fruits and vegetables. He selects products with

care and precision, minimizing damage and waste. By learning from each

harvest what conditions lead to the best yield and quality it helps farmers

optimize picking schedules. See lecture 10 on robotic RL.
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Machine learning and reinforcement learning: definitions

Definition (Machine learning)

Machine learning is a broad subfield of artificial intelligence which is concerned

with the development of algorithms and techniques that allow computers to

“learn”.

Definition (Reinforcement Learning)

Reinforcement Learning (RL in short) refers to a class of problems in machine

learning which postulate an autonomous agent exploring an environment in

which the agent perceives information about its current state and takes actions.

The environment, in return, provides a reward signal (which can be positive or

negative). The agent has as objective to maximize the (expected) cumulative

reward signal over the course of the interaction.
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Definition (The policy)

The policy of an agent determines the way the agent selects its action based on

the information it has. A policy can be either deterministic or stochastic, either

stationary or time-dependant, either Markov or history-dependant.

Research in reinforcement learning aims at designing policies which lead to large

(expected) cumulative reward.

Where does the intelligence come from? The policies process in an “intelligent

way” the information to select “good actions”.
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An RL agent interracting with its environment

1

1Source: Kaufmann et al. [2023]
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Demo

https://www.youtube.com/watch?v=yz2in2eFATE
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Some generic difficulties with designing intelligent agents

• Inference problem. The environment dynamics and the mechanism behind the

reward signal are (partially) unknown. The policies need to be able to infer from

the information the agent has gathered from interaction with the system, “good

control actions”.

• Computational complexity. The policy must be able to process the history of

the observation within limited amount of computing time and memory.

• Tradeoff between exploration and exploitation.2 To obtain a lot of reward, a

reinforcement learning agent must prefer actions that it has tried in the past and

found to be effective in producing reward. But to discover such actions, it has to

try actions that it has not selected before.

2May be seen as a subproblem of the general inference problem. This problem is often

referred to in the “classical control theory” as the dual control problem.
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The agent has to exploit what it already knows in order to obtain reward, but it

also has to explore in order to make better action selections in the future. The

dilemma is that neither exploration nor exploitation can be pursued exclusively

without failing at the task. The agent must try a variety of actions and

progressively favor those that appear to be best. On a stochastic task, each action

must be tried many times to gain a reliable estimate of its expected reward.

• Exploring safely the environment. During an exploration phase (more

generally, any phase of the agent’s interaction with its environment), the agent

must avoid reaching unacceptable states (e.g., states that may for example

endanger its own integrity). By associating rewards of −∞ to those states,

exploring safely can be assimilated to a problem of exploration-exploitation.

• Adversarial environment. The environment may be adversarial. In such a

context, one or several other players seek to adopt strategies that oppose the

interests of the RL agent.
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Problem setting and modeling assumptions



Different characterizations of RL problems

• Stochastic (e.g., st+1 = f(st, at, wt) where the random disturbance wt is

drawn according to the exogenous probability distribution Pw(·)) versus
deterministic (e.g., st+1 = f(st, at))

• Partial observability versus full observability. The environment is said to be

partially (fully) observable if the signal ot describes partially (fully) the

environment’s state st at time t.

• Time-invariant (e.g., st+1 = f(st, at, wt) with wt ∼ Pw(·)) versus
time-variant (e.g., st+1 = f(st, at, wt, t)) dynamics.

• Continuous (e.g., ṡ = f(s, a, w)) versus discrete dynamics (e.g.,

st+1 = f(st, at, wt)).

• Finite time versus infinite time of interaction.
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• Multi-agent framework versus single-agent framework. In a multi-agent

framework the environment may be itself composed of (intelligent) agents. A

multi-agent framework can often be assimilated to a single-agent framework

by considering that the internal states of the other agents are unobservable

variables. Game theory and, more particularly, the theory of learning in

games studies situations where various intelligent agents interact with each

other.

• Single state versus multi-state environment. In single state environment,

computation of an optimal policy for the agent is often reduced to the

computation of the maximum of a stochastic function (e.g., find

a∗ ∈ argmax
a∈A

E
w∼Pw(·)

[r(a,w)]).

• Multi-objective reinforcement learning agent (reinforcement learning signal

can be multi-dimensional) versus single-objective RL agent.

• Risk-adverse reinforcement learning agent. The goal of the agent is not

anymore to maximize the expected cumulative reward but to maximize for

example the lowest cumulative reward it could possibly obtain.
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Characterization of the RL problem adopted in this class

• Dynamics of the environment: In the following, we assume that the state of the

RL agent follows a discrete-time dynamics

st+1 = f(st, at, wt) t = 0, 1, 2 . . .

where f : S ×A×W → S models the time-invariant system dynamics which

outputs for any time t ∈ {0, 1, . . .}, state st from the state space S, any action at

from the action space A and any random disturbance wt from the disturbance

space W drawn according to a time-invariant probability distribution wt ∼ Pw(·),
the next state st+1 ∈ S.

• Reward signal:

To the transition from t to t+1 is associated a reward signal γtrt = γtr(st, at, wt)

where r : S ×A×W → R is a reward function supposed to be bounded by a

constant Br > 0 and γ ∈ [0, 1[ a decay (also called discount) factor.
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Definition (Cumulative reward signal)

Let ht ∈ H be the trajectory from instant time 0 to t in the combined state,

action, reward spaces: ht = (s0, a0, r0, s1, a1, r1, . . . , at−1, rt−1, st). Let η ∈ Πη

be a history-dependent stochastic policy and let us denote by V η(s) the

expected return of a policy η (or expected cumulative reward signal) when the

system starts from s0 = s:

V η(s) = lim
T→∞

E

[
T∑

t=0

γtr(st, at ∼ η(·|ht), wt)|s0 = s

]

• Information available:

The agent does not know f , r and Pw. The only information it has on these

three elements is the information contained in ht.

For simplicity, in the following of this presentation, we assume that policies are

deterministic, i.e.: ∀η ∈ Πη, ∀h ∈ H, η(·|h) = δ(η(h)) where δ denotes (here) the

Dirac delta function.
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Exercise 1: Computation of the cumulative reward signal

Compute the cumulative reward signal V π(1) with a constant policy

π(s) = 1, ∀s ∈ S.
The state space and action space are respectively defined by:

S = {s ∈ {1, 2, 3, 4}}, A = {a ∈ {−1, 1}}

S=1 S=2 S=3 S=4

         +1

The reward function and the dynamics are the following:

f(s, a) = (min(max(s+ a, 1), 4)

r(s, a) =

1 if f(s, a) = 4

0 otherwise
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Exercise 1: Solution

Solution:

V π(1) = lim
T→∞

[r(1, 1) + γr(2, 1) + γ2r(3, 1) + γ3r(4, 1) + ...+ γT r(4, 1)]

= lim
T→∞

[γ2 + ...+ γT ]

=γ2 lim
T→∞

[1 + ...+ γT−2]

=
γ2

1− γ

Reminder:

lim
T→∞

T∑
t=0

γt =
1

1− γ
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Optimal control formulation of reinforcement

learning



Optimal control formulation of reinforcement learning

Theorem (Optimal policy existence)

Let η∗ ∈ Πη a policy such that ∀h ∈ H,

V η∗
(s) = max

η∈Πη

V η(s) (1)

Under some mild assumptions3 on f , r and Pw, such a policy η∗ indeed exists.

• In reinforcement learning, we want to build policies η̂∗ such that V η̂∗

is as close as possible (according to specific metrics) to V η∗
.

• If f , r and Pw were known, we could, by putting aside the difficulty of finding

in Πη the policy η∗, design the optimal agent by solving the optimal control

problem (1). However, V η depends on f , r and Pw which are supposed to be

unknown. ⇒ How can we solve this combined inference - optimization problem?

3We will suppose that these mild assumptions are always satisifed afterwards.
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Dynamic Programming (DP) theory reminder: optimality of station-

ary policies

Definition (Deterministic stationary Markov policy)

A deterministic stationary Markov control policy µ : S → A selects at time t

the action at = µ(st). We denote Πµ the set of deterministic stationary Markov

policies. A deterministic stationary Markov policy will output the exact same

value µ(st) and µ(st′) as soon as st = st′ , whatever the history and the time.

Definition (Expected return)

The expected return of a deterministic stationary Markov policy, when the

system starts from s0 = s, is:

V µ(s) = lim
N→∞

E
w0,w1,...,wN

[
N∑
t=0

γtr(st, µ(st), wt)|s0 = s

]
. (2)
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History-dependent vs stationary policies

As seen later in the course, because of the Markovian property of the state

dynamics, and the fact that γ < 1, an optimal deterministic stationary Markov

policy µ∗ exists, satisfying:

V µ∗
(s) = max

µ∈Πµ

V µ(s), ∀s ∈ S.

By denoting by η∗ an optimal history-dependent policy, one can prove that

V µ∗
(s) = V η∗

(s), ∀s ∈ S.

⇒ In the infinite horizon, considering only stationary Markov policies

is not suboptimal.

In the following, unless explicitly mentioned, we will consider deterministic

stationary Markov policies only, and denote them using the letter µ.
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Truncated return V µ
N

Definition (Truncated return V µ
N )

The truncated return of a stationary policy V µ
N : S → R, when the system starts

from s0 = s, is the truncation of the N first terms of the previously defined

expected return:

V µ
N (s) = E

w0,w1,...,wN−1

[
N−1∑
t=0

γtr(st, µ(st), wt)|s0 = s

]
, ∀N ≥ 1. (3)

with V µ
0 (s) ≡ 0.

The truncated return V µ
N (s) measures the expected sum of discounted reward

over N steps under a given policy µ and starting a state s. Note that the

truncated return can also be defined for a time-dependent policy π:

V π
N (s) = E

w0,w1,...,wN−1

[
N−1∑
t=0

γtr(st, π(t, st), wt)|s0 = s

]
, ∀N ≥ 1. (4)
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Truncated return V µ
N : recursive form

From equation (3), we derive the following theorem:

Theorem (Truncated return V µ
N : recursive form)

The truncated return can be written in a recursive form:

V µ
N (s) = E

w∼Pw(·)

[
r(s, µ(s), w) + γV µ

N−1(f(s, µ(s), w))
]
, ∀N ≥ 1 (5)

with V µ
0 (s) ≡ 0.

Proof: The result is obtained by (i) isolating the first term of the sum in the

definition of V µ
N in eq. (3), (ii) putting γ outside of the sum of the remaining

terms, and (iii) making a variable name change in the time index of the

remaining sum to make V µ
N−1 appear. ■
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Relation between V µ and V µ
N

From equations (2) and (3), we have:

lim
N→∞

∥V µ − V µ
N∥∞ → 0. (6)

Similarly, we can also write

V µ(s) = V µ
N (s) + γN E

sN
[V µ(sN )] , ∀s ∈ S (7)

where sN is a (random) state drawn according to the state probability

distribution obtained when starting from state s and following policy µ during N

steps. Assuming that the reward function is bounded by Br = ∥r∥∞ and

γ ∈ [0; 1[, we can show that there exists an upper bound on the value of V µ(s)

∥V µ∥∞ ≤ lim
N→∞

N∑
t=0

γtBr = lim
N→∞

1− γN+1

1− γ
Br =

Br

1− γ
(8)

Using (7) and (8), we can show that there exists an upper bound on ∥V µ − V µ
N∥∞

∥V µ − V µ
N∥∞ ≤

γN

1− γ
Br. (9)

Indeed,

∥V µ − V µ
N∥∞ ≤ γN∥V µ∥∞ =

γN

1− γ
Br.
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Exercise 2: Computation of the V µ
N function

Compute V µ
4 (1), V µ

4 (2), V µ
4 (3) and V µ

4 (4) with policy π(s) = 1, ∀s ∈ S.
The state space and action space are respectively defined by:

S = {s ∈ {1, 2, 3, 4}}, A = {a ∈ {−1, 1}}

S=1 S=2 S=3 S=4

         +1

The reward function and the dynamics are the following:

f(s, a) = (min(max(s+ a, 1), 4)

r(s, a) =

1 if f(s, a) = 4

0 otherwise
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Exercise 2: Solution

Solution:

V µ
N (s) = r(s, µ(s)) + γV µ

N−1(f(s, µ(s))), V µ
0 (s) ≡ 0

V µ
1 (1) = 0, V µ

1 (2) = 0, V µ
1 (3) = 1, V µ

1 (4) = 1

V µ
2 (1) = 0, V µ

2 (2) = γ, V µ
2 (3) = 1 + γ, V µ

2 (4) = 1 + γ

V µ
3 (1) = γ2, V µ

3 (2) = γ + γ2, V µ
3 (3) = V µ

3 (4) = 1 + γ + γ2

V µ
4 (1) = γ2 + γ3, V µ

4 (2) = γ + γ2 + γ3, V µ
4 (3) = V µ

4 (4) = 1 + γ + γ2 + γ3
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State-action value function

The V µ function evaluates the quality of a policy µ. However, in reinforcement

learning, the objective is to find policies that yield high returns. The state-action

value function is a powerful tool for achieving this goal.

Definition (Qµ-function)

Given a policy µ, we define the state-action value function Qµ : S ×A → R as:

Qµ(s, a) = lim
T→∞

E

[
T∑

t=0

γtr(st, at, wt)|s0 = s, a0 = a, at = µ(st) ∀t ≥ 1

]
(10)

The function Qµ evaluates the expected cumulative return of discounted reward

when starting from state s, taking action a, and then following the policy µ

thereafter for an infinite time horizon.
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Truncated state-action value function

In the context of a finite time horizon, we define the truncated state-action value

functions associated with the a policy µ:

Definition (Truncated Qµ
N -function)

We define the functions Qµ
N : S ×A → R as the truncation of the N first terms

of the previously defined state-action value function:

Qµ
N (s, a) = E

w0,w1,...,wN−1

[
N−1∑
t=0

γtr(st, at, wt)|s0 = s, a0 = a, at = µ(st) ∀t ≥ 1

]
.

(11)

with Qµ
0 (s, a) ≡ 0.
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Truncated state-action value function: recursive form

From the equation (11), we derive the following theorem:

Theorem (Truncated Qµ
N -function: recursive form)

The Qµ
N−functions S ×A → R can also be written using the recurrence

equation:

Qµ
N (s, a) = E

w∼Pw(·)

[
r(s, a, w) + γQµ

N−1

(
f(s, a, w), µ(f(s, a, w))

)]
. (12)

with Qµ
0 (s, a) ≡ 0.

Proof : The result is obtained by (i) isolating the first term of the sum in the

definition of Qµ
N in eq. (11), (ii) putting γ outside of the sum of the remaining

terms, and (iii) making a variable name change in the time index of the

remaining sum to make Qµ
N−1 appear. ■
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Truncated state-action value function for time dependent policies

The truncated state-action value functions can also be defined for a

time-dependent policies π:

Qπ
N (s, a) = E

w0,w1,...,wN−1

[
N−1∑
t=0

γtr(st, at, wt)|s0 = s, a0 = a, at = π(t, st) ∀t ≥ 1

]
.

(13)
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Truncated optimal state-action value function

Definition (QN -functions)

We define the functions QN : S ×A → R by the recurrence equation

QN (s, a) = E
w∼Pw(·)

[
r(s, a, w) + γmax

a′∈A
QN−1(f(s, a, w), a′)

]
, ∀N ≥ 1 (14)

with Q0(s, a) ≡ 0.

Definition (N-optimal stationary policy)

A stationary policy µ∗
N is N-optimal iff it selects an optimal action when there

remains exactly N steps:

µ∗
N (s) ∈ argmax

a∈A
QN (s, a) (15)
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Finite time horizon optimal policy

Theorem (Finite time horizon optimal policy)

Let us define a time-dependent policy π∗
N : {0, . . . , N − 1} × S → A as follows:

∀t ∈ {0, . . . , N − 1}, ∀s ∈ S, π∗
N (t, s) = µ∗

N−t(s)

∈ argmax
a∈A

QN−t(s, a)

Choosing an action following π∗
N (t, s) = µ∗

N−t(s) when there remain exactly

N − t steps is optimal.

Proof: Observe that ∀s ∈ S, µ∗
1(s) ∈ argmax

a∈A
E

w∼Pw(·)
[r(s, a, w)] and that, by

induction, ∀N ∈ N,

∀s ∈ S, µ∗
N (s) ∈ argmax

a∈A
E

w0,...,wN−1

[
r(s, a, w) +

N−1∑
t=1

γtr(st, µ
∗
N−t(st), wt)

]
(16)

where s0 = s, a0 = a and st+1 = f(st, µ
∗
N−t(st), wt), ∀t ∈ {0, . . . , N − 1}. ■
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Finite time horizon optimal policy

Corollary

∀N ∈ N,∀(s, a) ∈ S ×A, QN (s, a) = Q
π∗
N

N (s, a) (17)

Proof: The result is obtained by replacing µ∗
N−t(·) by π∗

N (t, ·) in 16. ■

The QN -functions evaluate the quality of an action a taken in state s,

considering both the immediate reward and the expected discounted rewards

from acting optimally thereafter, up to a finite horizon N .
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A few words about finite-horizon optimality

Be careful! A N-step optimal stationary policy is not an optimal policy for a

finite-time horizon. However, we can define an non-stationary optimal policy

based on multiple N-step optimal stationary policies.

Example: Imagine a robot that would be able to navigate on a straight line.

Starting from an initial state, the robot can either go left and get an

instantaneous +1 reward, or go right 3 times in a row and get a +10 reward. As

soon as the robot reaches states where it receives rewards (+1 or +10), it stays in

these states and continues collecting the same reward.

Question: depending on the value of the optimization horizon N , which

direction the robot should take in order to maximize the discounted collected

rewards?
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Exercice 3: Optimal policy in finite time vs infinite time horizon

The state space and action space are respectively defined by:

S = {s ∈ {0, 1, 2, 3, 4}}, A = {a ∈ {−1, 1}}.

The reward function and the dynamics are the following:

f(s, a) = (min(max(s+ a, 0), 4)

r(s, a) =


10 if f(s, a) = 4

1 if f(s, a) = 0

0 otherwise.
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Exercice 3: Solution

We notice that the optimal policy in finite time will depend on the number of

remaining time steps before the time hozion N is reached:

π∗
N (t, s) =

1 if s+ (N − t) ≥ 4

−1 otherwise.

That means that the optimal policy is not stationary in finite time as expected.

Whereas in infinite time horizon, the optimal policy is stationary (and does does

not depend on time anymore):

µ∗(s) = 1 ∀s ∈ S

34/82



Bellman equation and convergence of QN

Due to their recursive definition, and following the application of the Contraction

Mapping Theorem, the family of QN functions converges to a unique Q function.

This Q function is the (unique) fixed-point of the so-called Bellman equation.

Definition (Bellman Equation and Q-function)

We define the Q-function as being the unique solution of the Bellman equation:

Q(s, a) = E
w∼Pw(·)

[
r(s, a, w) + γmax

a′∈A
Q(f(s, a, w), a′)

]
. (18)

Theorem (Convergence of QN)

The sequence of functions QN converges to the Q-function in the infinite norm,

i.e. lim
N→∞

∥QN −Q∥∞ → 0 .

35/82



Proof: the two above-mentioned results are direct consequence of the application

of the Contraction Mapping Theorem (also referred to as the Banach fixed-point

Theorem) when considering the mapping F defined as follows:

F (Q)(s, a) = E
w∼Pw(·)

[
r(s, a, w) + γmax

a′∈A
Q(f(s, a, w), a′)

]
(19)

and observing that QN+1(s, a) = F (QN )(s, a),∀(s, a) ∈ S ×A. ■

The Q-function evaluates the quality of an action a in state s, considering both

the immediate reward and the expected discounted rewards from acting

optimally thereafter with an infinite time horizon.
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Optimal stationary policy

Theorem (Optimal stationary policy)

A stationary policy µ∗ defined as

µ∗(s) ∈ argmax
a∈A

Q(s, a) (20)

is optimal in the infinite time horizon setting.

Proof: By definition, µ∗(s) ∈ argmaxa Q(s, a). Thus,

Q(s, a) = E
w∼Pw(·)

[r(s, a, w) + γQ(f(s, a, w), µ∗(f(s, a, w))] (21)

= Qµ∗
(s, a) (22)

Thus,

max
a

Q(s, a) = max
a

Qµ∗
(s, a) (23)

= V µ∗
(s) (24)
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Optimal stationary policy

From Equation 17 given in the previous corollary, one has:

∀N ∈ N,∀(s, a) ∈ S ×A, QN (s, a) = Q
π∗
N

N (s, a) (25)

Thus,

∀N ∈ N, ∀(s, a) ∈ S ×A,max
a

QN (s, a) = max
a

Q
π∗
N

N (s, a) (26)

= V
π∗
N

N (s) (27)

Taking the latter equation to the limit, since (QN ) uniformly converge to Q one

has:

∀s ∈ s, lim
N→∞

max
a

QN (s, a) = max
a

Q(s, a) (28)

= lim
N→∞

V
π∗
N

N (s) (29)
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Optimal stationary policy

From equations (24) and (29), we have that:

∀s ∈ S, V µ∗
(s) = lim

N→∞
V

π∗
N

N (s) (30)

The latter equation means that, for any state s, the value of µ∗(s) equals the

asymptotical discounted return (when the horizon converges to infinity) of the

optimal finite-horizon (time dependent) optimal policy.

■

Again, be careful: necessarily, in the infinite horizon setting, the (stationary)

N−step optimal policy µ∗
N is suboptimal with respect to the (stationary) infinite

horizon policy µ∗, i.e.,

∀s ∈ s, V µ∗
(s) ≥ V µ∗

N (s) (31)
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Exercise 4: Computation of the QN function

Compute Q4(s, a), ∀(s, a) ∈ S ×A with policy π(s) = 1, ∀s ∈ S.
The state space and action space are respectively defined by:

S = {s ∈ {1, 2, 3, 4}}, A = {a ∈ {−1, 1}}

S=1 S=2 S=3 S=4

         +1

The reward function and the dynamics are the following:

f(s, a) = (min(max(s+ a, 1), 4)

r(s, a) =

1 if f(s, a) = 4

0 otherwise
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Exercise 4: Solution

Solution:

QN (s, a) = r(s, a) + γmax
a′∈A

QN−1(f(s, a), a
′), Q0(s, a) ≡ 0

N 1 2 3 4 5

QN (1,−1) 0 0 0 γ3 γ3 + γ4

QN (1, 1) 0 0 γ2 γ2 + γ3 γ2 + γ3 + γ4

QN (2,−1) 0 0 0 γ3 γ3 + γ4

QN (2, 1) 0 γ γ + γ2 γ + γ2 + γ3 γ + γ2 + γ3 + γ4

QN (3,−1) 0 0 γ2 γ2 + γ3 γ2 + γ3 + γ4

QN (3, 1) 1 1 + γ 1 + γ + γ2 1 + γ + γ2 + γ3 1+γ + γ2 + γ3 + γ4

QN (4,−1) 0 γ γ + γ2 γ + γ2 + γ3 γ + γ2 + γ3 + γ4

QN (4, 1) 1 1 + γ 1 + γ + γ2 1 + γ + γ2 + γ3 1 + γ + γ2 + γ3 + γ4
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Bound on the suboptimality of V µ∗
N

Theorem (Bound on the suboptimality of V µ∗
N )

There exists a bound on the suboptimality of µ∗
N in comparison to µ∗, which is

given by the following inequality:∥∥∥V µ∗
− V µ∗

N

∥∥∥
∞
≤ 2γNBr

(1− γ)2
(32)

Proof :

Let consider a stochastic environment described by the random disturbance w, a

dynamics f and a reward function r:

∀(st, at) ∈ S ×A, st+1 = f(st, at, wt) ∈ S, rt = r(st, at, wt) ∈ R+, wt ∼ Pw(·)

where S is the state space and A the action space.
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First, notice that the optimal stationary policy µ∗ for an infinite time horizon

may no longer be optimal when there remain exactly N steps.

Recall the time-dependent optimal policies π∗
N : {0, . . . , T − 1} × S → A defined

as:

∀t ∈ {0, . . . , T − 1}, ∀s ∈ S, π∗
N (t, s) = µ∗

N−t(s)

∈ argmax
a∈A

QN (s, a)

Remember that choosing an action following µ∗
N−t when there remain exactly

N − t steps is optimal. We then define recursively

V
π∗
N

N (s) = E
w∼Pw(·)

[
r(s, µ∗

N (s), w) + γV
π∗
N

N−1(f(s, µ
∗
N (s), w))

]
, ∀s ∈ S (33)

where V
π∗
N

0 (s) = 0, ∀s ∈ S.
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Note that this policy is no longer stationary, since it depends on time. Therefore,

V
π∗
N

N (s) ≥ V µ∗

N (s), ∀s ∈ S

By definition:

V µ(s) = E
w∼Pw(·)

[
r(s, µ(s), w) + γV µ(f(s, µ(s), w))

]
Since π∗

N is N−step optimal (cf. eq 16), we have:

V
π∗
N

N (s) = E
w∼Pw(·)

[
r(s, µ∗

N (s), w) + γV
π∗
N

N−1(f(s, µ
∗
N (s), w))

]
≥ E

w∼Pw(·)

[
r(s, µ∗(s), w) + γV

π∗
N

N−1(f(s, µ
∗(s), w))

]
Therefore,

V µ∗
(s)− V µ∗

N (s) ≤

V µ∗
(s)− E

w∼Pw(·)

[
r(s, µ∗(s), w) + γV

π∗
N

N−1(f(s, µ
∗(s), w))

]
+ E

w∼Pw(·)

[
r(s, µ∗

N (s), w) + γV
π∗
N

N−1(f(s, µ
∗
N (s), w))

]
− V µ∗

N (s)
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V µ∗
(s)− V µ∗

N (s) ≤ γ ×

(
E

Pw(·)

[
V µ∗

(f(s, µ∗(s), w))− V
π∗
N

N−1(f(s, µ
∗(s), w))

]
+

E
Pw(·)

[
V

π∗
N

N−1(f(s, µ
∗
N (s), w))− V µ∗

N (f(s, µ∗
N (s), w))

])

Taking the infinity norm, with s′w = f(s, µ∗(s), w) and s′′w = f(s, µ∗
N (s), w),

∥V µ∗
(s)− V µ∗

N (s)∥∞ ≤ γ

(
Ew

[
∥V µ∗

(s′w)− V
π∗
N

N−1(s
′
w)∥∞

]
+Ew

[
∥V π∗

N
N−1(s

′′
w)− V µ∗

N (s′′w)∥∞
])

∥V µ∗
− V µ∗

N ∥∞ ≤ γ∥V µ∗
− V

π∗
N

N−1∥∞ + γ∥V π∗
N

N−1 − V µ∗
N ∥∞

≤ γ∥V µ∗
− V

π∗
N

N−1∥∞ + γ∥V π∗
N

N−1 − V µ∗
+ V µ∗

− V µ∗
N ∥∞

≤ 2γ∥V µ∗
− V

π∗
N

N−1∥∞ + γ∥V µ∗
− V µ∗

N ∥∞
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Then,

(1− γ)∥V µ∗
− V µ∗

N ∥∞ ≤ 2γ∥V µ∗
− V

π∗
N

N−1∥∞

∥V µ∗
− V µ∗

N ∥∞ ≤ 2γ

1− γ
∥V µ∗

− V
π∗
N

N−1∥∞

Since

∀s ∈ S, V µ∗
(s)− V

π∗
N

N−1(s) ≤ V µ∗

N−1(s) + γN−1 lim
K→∞

K∑
k=0

γkBr − V
π∗
N

N−1(s)

≤ γN−1Br

1− γ

We have:

∥V µ∗
− V µ∗

N ∥∞ ≤ 2γ

1− γ
∥V µ∗

− V
π∗
N

N−1∥∞

≤ 2γ

(1− γ)

γN−1Br

(1− γ)

≤ 2γNBr

(1− γ)2

■
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Value Iteration

The principle of VI is to recursively apply the value update rule:

Update rule

For each state s ∈ S, recursively update the value function:

Vk+1(s) = max
a∈A

E
w∼PW (·)

[r(s, a, w) + γVk(f(s, a, w))]

with V0(s) = 0, ∀s ∈ S.

Termination: Stops when |Vk+1(s)− Vk(s)| < θ for all states for some

predefined criterion θ > 0.

Action selection

Select an action maximizing the value:

µ(s) ∈ argmax
a∈A

E
w∼PW (·)

[r(s, a, w) + γVk(f(s, a, w))]
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Policy iteration

PI is a two-step process that alternates between evaluating a fixed policy and

improving it until stability is reached.

Policy Evaluation

Compute V µ for the current policy µ:

V µ
k+1(s) = E

w∼PW (·)
[r(s, µ(s), w) + γV µ

k (f(s, µ(s), w))]

Policy Improvement

Update the policy to be greedy w.r.t. V µ:

µ′(s) = argmax
a∈A

E
w∼PW (·)

[r(s, a, w) + γV µ(f(s, a, w))]

Termination: If µ′(s) = µ(s) for all s ∈ S, the algorithm terminates.
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The Value Iteration and Policy Iteration paradigms

As mentioned earlier, RL aims at designing policies which lead to large

(expected) cumulative reward.

Value Iteration (VI) and Policy Iteration (PI) constitute the classical dynamic

programming algorithms and form the conceptual foundation of most modern

reinforcement learning methods.

While VI and PI are originally model-based approaches, they provide the

mathematical blueprints for the two main branches of model-free RL as well

(Value-based and Policy-based methods).

Note that model-free RL has expanded beyond just these two branches. For

instances, there are also model-based RL methods that learn the model.

Actor-Critic methods blur the line between these branches, combining both value

and policy components.
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Taxonomy

REINFORCEMENT LEARNING

MODEL-BASED

DP

VIPI

Model-Learn

Dyna-QMuZeroDreamer

Planning / MCTS

UCTAlphaGo

MODEL-FREE

VALUE

Tabular

MC, TDSARSAQ-Learning

Deep

DQNRainbow

POLICY

PG

REINFORCETRPO, PPO

Evol

ES, CMA-ES

ACTOR-CRITIC

A3C/A2CDDPG, TD3SAC

Legend: DP=Dynamic Programming, VI=Value Iteration, PI=Policy Iteration, PG=Policy Gradient,

(S)AC=(Soft) Actor-Critic, ES=Evolution Strategies, Evol=Evolutionary, MC=Monte Carlo, TD=Temporal

Difference, SARSA=State,Action,Reward,State,Action,DQN=Deep Q Network,TRPO=Trust-Region Policy

Optimization,PPO=Proximal Policy Optimization, MCTS=Monte Carlo Tree Search
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Tabular reinforcement learning: planning and

learning



A pragmatic model-based approach for designing good policies π̂∗

Inferring from the
information a
model of the
environment

Computation of a
stationary policy
which is optimal

with respect to the
model

"Randomization" of the
stationary policy to

address the
exploration-

exploitation tradeoff.

Select an action a
according to this

randomized policy 

Information Action

We focus first on to the design of functions π̂∗ which realize sequentially the

following three tasks:

1. “System identification” phase. Estimation from ht of an approximate system

dynamics f̂ , an approximate probability distribution P̂w and an approximate

reward function r̂.
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2. Resolution of the optimization problem.

Find in Πµ a policy µ̂∗ such that ∀s ∈ S, V µ̂∗
(s) = max

µ∈Πµ

V̂ µ(s)

where V̂ µ̂ is defined similarly as function V µ but with f̂ , P̂w and r̂ replacing f ,

Pw and r, respectively.

3. Afterwards, the policy π̂ selects with a probability 1− ε(ht) actions according

to the policy µ̂∗ and with a probability ε(ht) uniformly at random among the

actions. Step 3 has been introduced to address the dilemma between exploration

and exploitation.4

4We will not address further the design of the ’right function’ ε : H → [0, 1]. In many

applications, it is chosen equal to a small constant (say, 0.05) everywhere.
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Some algorithms for designing π̂∗ when dealing with finite state-action

spaces

• Until say otherwise, we consider the particular case of finite state and action

spaces (i.e., S ×A finite).

• When S and A are finite, there exists a vast panel of practical implementable

RL algorithms.

• We focus first on approaches which solve separately Step 1. and Step 2. and

then on approaches which solve both steps together.

• The proposed algorithms infer µ̂∗ from ht. They can be adapted in a

straigthforward way to episode-based reinforcement learning where a model of µ∗

must be inferred from several trajectories ht1 , ht2 , . . ., htm with ti ∈ N0.

53/82



Reminder on Markov Decision Processes

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is defined through the following objects: a

state space S, an action space A, transition probabilities p(s′|s, a) ∀s, s′ ∈ S,
a ∈ A and a reward function r(s, a).

• p(s′|s, a) gives the probability of reaching state s′ after taking action a while

being in state s.

• We consider MDPs for which we want to find decision policies that maximize

the sum of reward signal γtr(st, at) over an infinite time horizon.

• MDPs can be seen as a particular type of the discrete-time optimal control

problem introduced earlier.

54/82



MDP Structure Definition from the System Dynamics and Reward

Function

• We define5

r(s, a) = E
w∼Pw(·)

[r(s, a, w)] ∀s ∈ S, a ∈ A (34)

p(s′|s, a) = E
w∼Pw(·)

[I{s′=f(s,a,w)}] ∀s, s′ ∈ S, a ∈ A (35)

• Equations (34) and (35) define the structure of an equivalent MDP in the sense

that the expected return of any policy applied to the original optimal control

problem is equal to its expected return in the MDP.

• The recurrence equation defining the functions QN can be rewritten:

QN (s, a) = r(s, a) + γ
∑

s′∈S p(s′|s, a)max
a′∈A

QN−1(s
′, a′), ∀N ≥ 1 with

Q0(s, a) ≡ 0.

5I{logical expression} = 1 if logical expression is true and 0 if logical expression is false.
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Step 1. Inferring the structure of the equivalent MDP

• Inferring a model of the environment translates into learning the parameters

p(s′|s, a) and r(s, a) of the MDP from ht = (s0, a0, r0, s1, a1, r1, . . . , at−1, rt−1, st).

• According to equations 34 and 35, learning the dynamics and the rewards

function amounts to estimate the expected value of random variables

Estimation of r(s, a) and p(s′|s, a):
Let X(s, a) = {k ∈ {0, 1, . . . , t− 1}|(sk, ak) = (s, a)}. Let k1, k2, . . ., k#X(s,a)

denote the elements of the set.6 The values rk1 , rk2 , . . ., rk#X(s,a)
are #X(s, a)

values of the random variable r(s, a, w) which are drawn independently.

Similarly, the values I{s′=sk1+1}, I{s′=sk2+1}, . . ., I{s′=sk#X(s,a)+1} are #X(s, a)

values of the random variable I{s′=f(s,a,w)} which are drawn independently.

It follows therefore naturally to use the sample mean as unbiased estimator of the

expected values of that to estimate its mean value r(s, a) and p(s′|s, a):

∀(s, a) ∈ S ×A, r̂(s, a) =

∑
k∈X(s,a) rk

#X(s, a)
(36)

p̂(s′|s, a) =
∑

k∈X(s,a) I{sk+1=s′}

#X(s, a)
(37)

6If X is a set of elements, #X denote the cardinality of X. 56/82



Reminder: statistical properties of the sample mean

• Let X1, X2, . . ., be an infinite sequence of independent and identically

distributed (i.i.d.) random variables with finite expected values E[Xi] = µ, ∀i.

• The weak law of large numbers states that given a collection of i.i.d. samples

from a random variable with finite expected value, the sample mean converges in

probability to the expected value:

∀ε > 0, lim
n→∞

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Xn − µ

∣∣∣∣∣ < ε

)
= 1.

• The strong law of large numbers states that the sample mean converges almost

surely to the expected value:

Pr

(
lim

n→∞

1

n

n∑
i=1

Xn = µ

)
= 1.

• The strong law is called ”strong” because random variables which converge

strongly (almost surely) are guaranteed to converge weakly (in probability).

However the weak law is known to hold in certain conditions where the strong

law does not hold and then the convergence is only weak (in probability).
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Step 2. Computation of µ̂∗ identification by learning the structure of

the equivalent MPD

• We compute the Q̂N -functions from the knowledge of r̂ and p̂ by exploiting the

recurrence equation:

Q̂N (s, a) = r̂(s, a) + γ
∑

s′∈S p̂(s′|s, a)max
a′∈A

QN−1(s
′, a′), ∀N ≥ 1 with

Q̂0(s, a) ≡ 0 and then take

µ̂∗
N = argmax

a∈A
Q̂N (s, a) ∀s ∈ S (38)

as approximation of the optimal policy, with N ”large enough” (e.g., right hand

side of inequality (32) drops below ε).

• One can show that if the estimated MDP structure lies in an ‘ε-neighborhood’

of the true structure, then, V µ̂∗
is in a ‘O(ε)-neighborhood’ of V µ∗

where

µ̂∗(s) = lim
N→∞

argmax
a∈A

Q̂N (s, a).
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The Case of Limited Computational Resources

• Number of operations to estimate the MDP structure grows linearly with t.

Memory requirements needed to store ht also grow linearly with t ⇒ an agent

having limited computational resources will face problems after certain time of

interaction.

• We describe an algorithm which requires at time t a number of operations that

does not depend on t to update the MDP structure and for which the memory

requirements do not grow with t:

At time 0, set N(s, a) = 0, N(s, a, s′) = 0, R(s, a) = 0, p(s′|s, a) = 0, ∀s, s′ ∈ S
and a ∈ A.
At time t ̸= 0, do

1. N(st−1, at−1)← N(st−1, at−1) + 1

2. N(st−1, at−1, st)← N(st−1, at−1, st) + 1

3. R(st−1, at−1)← R(st−1, at−1) + rt

4. r(st−1, at−1)← R(st−1,at−1)

N(st−1,at−1)

5. p(s|st−1, at−1)← N(st−1,at−1,s)

N(st,at)
∀s ∈ S
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The Q-learning Algorithm

Idea: merge steps 1 and 2 to learn directly the Q-function.

The Q-learning algorithm is an algorithm that infers directly from

ht = (s0, a0, r0, s1, a1, r1, . . . , at−1, rt−1, st)

an approximate value of the Q-function, without identifying the structure of a

Markov Decision Process.

The algorithm can be described by the following steps:

1. Initialisation of Q̂current(s, a) to 0 everywhere. Set k = 0.

2. Q̂next(sk, ak)← (1− αk)Q̂current(sk, ak) + αk(rk + γmax
a∈A

Q̂current(sk+1, a))

3. k ← k + 1,Q̂current ← Q̂next . If k = t, return Q̂current and stop.

Otherwise, go back to 2.
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Q-learning: some remarks

• Iteration 2. can be rewritten as Q̂next(sk, ak)← Q̂current(sk, ak) + αkδ(sk, ak)

where the term:

δ(sk, ak) = rk + γmax
a∈A

Q̂current(sk+1, a)− Q̂current(sk, ak), (39)

called the temporal difference.

• Learning ratio αk: The learning ratio αk is often chosen constant with k and

equal to a small value (e.g., αk = 0.05, ∀k).

• Consistency of the Q-learning algorithm: Under some particular conditions on

the way αk decreases to zero ( lim
t→∞

∑t−1
k=0 αk →∞ and lim

t→∞

∑t−1
k=0 α

2
k <∞) and

the history ht (when t→∞, every state-action pair needs to be visited an

infinite number of times), Q̂→ Q when t→∞. (e.g. αk = 1
k
)

• Experience replay: At each iteration, the Q-learning algorihtm uses a sample

lk = (sk, ak, rk, sk+1) to update the function Q̂. If rather that to use the finite

sequence of sample l0, l2, . . ., lt−1, we use the infinite size sequence li1 , li2 , . . . to

update in a similar way Q̂, where the ij are i.i.d. with uniform distribution on

{0, 2, . . . , t− 1}, then Q̂ converges to the approximate Q-function computed from

the estimated equivalent MDP structure.
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Function approximation in reinforcement

learning



Inferring µ̂∗ from ht when dealing with very large or infinite state-

action spaces

• Up to now, we have considered problems having discrete (and not too large)

state and action spaces ⇒ µ̂∗ and the Q̂N -functions could be represented in a

tabular form.

• We consider now the case of very large or infinite state-action spaces: functions

approximators need to be used to represent µ̂∗ and the Q̂N -functions.

• These function approximators need to be used in a way that there are able to

‘well generalize’ over the whole state-action space the information contained in ht.

• There is a vast literature on function approximators in reinforcement learning.

We focus first on one algorithm named ‘fitted Q iteration’ which computes the

functions Q̂N from ht by solving a sequence of batch mode supervised learning

problems.
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Reminder: Batch mode supervised learning

• A batch mode Supervised Learning (SL) algorithm infers from a set of

input-output (input = information state); ( output = class label, real number,

graph, etc) a model which explains “at best” these input-output pairs.

• A loose formalisation of the SL problem: Let I be the input space, O the

output space, Ξ the disturbance space. Let g : I × Ξ→ O. Let Pξ(·|i) a
conditional probability distribution over the disturbance space.

We assume that we have a training set T S = {(il, ol)}#T S
l=1 such that ol has been

generated from il by the following mechanism: draw ξ ∈ Ξ according to Pξ(·|il)
and then set ol = g(il, ξ).

From the sole knowledge of T S, supervised learning aims at finding a function

ĝ : I → O which is a ‘good approximation’ of the function g(i) = E
ξ∼Pξ(·)

[g(i, ξ)]
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• Typical supervised learning methods are: kernel-based methods, (deep) neural

networks, tree-based methods.

Gender

SurvivedAge

Survived Class

Survived Died

Fem
aleM

al
e

 ≥ 20< 
20

1 2

Batch mode
 supervised

learning

• Supervised learning highly successful: state-of-the art SL algorithms have been

successfully applied to problems where the input state was composed thousands

of components.
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The fitted Q iteration algorithm

• Fitted Q iteration computes from ht the functions Q̂1, Q̂2, . . ., Q̂N ,

approximations of Q1, Q2, . . ., QN . At step N > 1, the algorithm uses the

function Q̂N−1 together with ht to compute a new training set from which a SL

algorithm outputs Q̂N . More precisely, this iterative algorithm works as follows:

First iteration: the algorithm determines a model Q̂1 of

Q1(s, a) = E
w∼Pw(·)

[r(s, a, w)] by running a SL algorithms on the training set:

T S = {((sk, ak), rk)}t−1
k=0 (40)

Motivation: One can assimilate S ×A to I, R to O, W to Ξ, Pw(·) to Pξ(·),
r(s, a, w) to g(i, ξ) and Q1(s, a) to g. From there, we can observe that a SL

algorithm applied to the training set described by equation (40) will produce a

model of Q1.
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Iteration N > 1: the algorithm outputs a model Q̂N of

QN (s, a) = E
w∼Pw(·)

[r(s, a, w) + γmax
a′∈A

QN−1(f(s, a, w), a′)] by running a SL

algorithms on the training set:

T S = {((sk, ak), rk + γmax
a′∈A

Q̂N−1(sk+1, a
′)}t−1

k=0

Motivation: One can reasonably suppose that Q̂N−1 is a a sufficiently good

approximation of QN−1 to be considered equal to this latter function. Assimilate

S ×A to I, R to O, W to Ξ, Pw(·) to Pξ(·), r(s, a, w) to g(i, ξ) and QN (s, a) to g.

From there, we observe that a SL algorithm applied to the training set described

by equation (41) will produce a model of QN .

• The algorithm stops when N is ‘large enough’ and µ̂∗
N (s) ∈ argmax

a∈A
Q̂N (s, a) is

taken as approximation of µ∗(s).
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The fitted Q iteration algorithm: some remarks

• Performances of the algorithm depends on the supervised learning (SL) method

chosen.

• Excellent and stable performances have been observed when combined with

supervised learning methods based on ensemble of regression trees and of course,

with deep neural nets, especially when images are used as input.

• Fitted Q iteration algorithm can be used with any set of one-step system

transitions (st, at, rt, st+1) where each one-step system transition gives

information about: a state, the action taken while being in this state, the reward

signal observed and the next state reached.

• Consistency, that is convergence towards an optimal solution when the number

of one-step system transitions tends to infinity, can be ensured under appropriate

assumptions on the SL method, the sampling process, the system dynamics and

the reward function.
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Computation of µ̂∗: from an inference problem to a problem of com-

putational complexity

• When having at one’s disposal only a few one-step system transitions, the main

problem is a problem of inference.

• Computational complexity of the fitted Q iteration algorithm grows with the

number M of one-step system transitions (sk, ak, rk, sk+1) (e.g., it grows as

M logM when coupled with tree-based methods).

• Above a certain number of one-step system transitions, a problem of

computational complexity appears.

• In certain situations, one may prefer to rely on algorithms having less inference

capabilities than the ‘fitted Q iteration algorithm’ but which are also less

computationally demanding to mitigate this problem of computational

complexity (e.g., policy gradient algorithms).
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• There is a serious problem plaguing every reinforcement learning algorithm

known as the curse of dimensionality7: whatever the mechanism behind the

generation of the trajectories and without any restrictive assumptions on

f(s, a, w), r(s, a, w), S and A, the number of computer operations required to

determine (close-to-) optimal policies tends to grow exponentially with the

dimensionality of S ×A.

• This exponentional growth makes these techniques rapidly computationally

impractical when the size of the state-action space increases.

• Many researchers in reinforcement learning/dynamic programming/optimal

control theory focus their effort on designing algorithms able to break this curse

of dimensionality. Deep neural nets give strong hopes for some classes of

problems.

7A term introduced by Richard Bellman (the founder of the DP theory) in the fifties.
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Q-learning with parametric function approximators

Let us extend the Q-learning algorithm to the case where a parametric

Q-function of the form Q̃θ(s, a) is used:

1. Equation (39) provides us with a desired update for Q̃θ(st, at), here:

δ(st, at) = rt + γmax
a∈A

Q̂θ(st+1, a)− Q̂θ(st, at), after observing (st, at, rt, st+1).

2. It follows the following change in parameters:

θ ← θ + αδ(st, at)
∂Q̃θ(st, at)

∂θ
. (41)
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Convergence theory of Q-learning



Contraction mapping

Let B(E) be the set of all bounded real-valued functions defined on an arbitrary

set E. With every function R : E → R that belongs to B(E), we associate the

scalar:

∥R∥∞ = sup
e∈E
|R(e)|. (42)

A mapping G : B(E)→ B(E) is said to be a contraction mapping if there exists a

scalar ρ < 1 such that:

∥GR−GR′∥∞ ≤ ρ∥R−R′∥∞ ∀R,R′ ∈ B(E). (43)
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Fixed point

R∗ ∈ B(E) is said to be a fixed point of a mapping G : B(E)→ B(E) if:

GR∗ = R∗. (44)

If G : B(E)→ B(E) is a contraction mapping then there exists a unique fixed

point of G. Furthermore if R ∈ B(E), then

lim
k→∞

∥GkR−R∗∥∞ = 0. (45)

From now on, we assume that:

1. E is finite and composed of n elements

2. G : B(E)→ B(E) is a contraction mapping whose fixed point is denoted by R∗

3. R ∈ B(E).
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Algorithmic models for computing a fixed point

All elements of R are refreshed: Suppose have the algorithm that updates at

stage k (k ≥ 0) R as follows:

R← GR. (46)

The value of R computed by this algorithm converges to the fixed point R∗ of G.

This is an immediate consequence of equation (45).

One element of R is refreshed: Suppose we have the algorithm that selects at

each stage k (k ≥ 0) an element e ∈ E and updates R(e) as follows:

R(e)← (GR)(e) (47)

leaving the other components of R unchanged. If each element e of E is selected

an infinite number of times then the value of R computed by this algorithm

converges to the fixed point R∗.
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One element of R is refreshed and noise introduction: Let η ∈ R be a noise

factor and α ∈ R. Suppose we have the algorithm that selects at stage k (k ≥ 0)

an element e ∈ E and updates R(e) according to:

R(e)← (1− α)R(e) + α((GR)(e) + η) (48)

leaving the other components of R unchanged.

We denote by ek the element of E selected at stage k, by ηk the noise value at

stage k and by Rk the value of R at stage k and by αk the value of α at stage k.

In order to ease further notations we set αk(e) = αk if e = ek and αk(e) = 0

otherwise.

With this notation equation (48) can be rewritten equivalently as follows:

Rk+1(ek) = (1− αk)Rk(ek) + αk((GRk)(ek) + ηk). (49)
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We define the history Fk of the algorithm at stage k as being:

Fk = {R0, . . . , Rk, e0, . . . , ek, α0, . . . , αk, η0, . . . , ηk−1}. (50)

We assume moreover that the following conditions are satisfied:

1. For every k, we have

E[ηk|Fk] = 0. (51)

2. There exist two constants A and B such that ∀k

E[η2
k|Fk] ≤ A+B∥Rk∥2∞. (52)

3. The αk(e) are nonnegative and satisfy

∞∑
k=0

αk(e) =∞,
∞∑

k=0

α2
k(e) <∞. (53)

Then the algorithm converges with probability 1 to R∗.
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The Q-function as a fixed point of a contraction mapping

We define the mapping H: B(S ×A)→ B(S ×A) such that

(HK)(s, a) = E
w∼Pw(·)

[r(s, a, w) + γmax
a′∈A

K(f(s, a, w), a′)] (54)

∀(s, a) ∈ S ×A.

• The recurrence equation (14) for computing the QN -functions can be rewritten

QN = HQN−1 ∀N > 1, with Q0(s, a) ≡ 0.

• We prove afterwards that H is a contraction mapping. As immediate

consequence, we have, by virtue of the properties algorithmic model (46), that

the sequence of QN -functions converges to the unique solution of the Bellman

equation (18) which can be rewritten: Q = HQ. Afterwards, we proof, by using

the properties of the algorithmic model (49), the convergence of the Q-learning

algorithm.
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H is a contraction mapping

This H mapping is a contraction mapping. Indeed, we have for any functions

K,K ∈ B(S ×A):8

∥HK −HK∥∞ = γ max
(s,a)∈S×A

| E
w∼Pw(·)

[max
a′∈A

K(f(s, a, w), a′)−

max
a′∈A

K(f(s, a, w), a′)]|

≤ γ max
(s,a)∈S×A

| E
w∼Pw(·)

[max
a′∈A
|K(f(s, a, w), a′)−

K(f(s, a, w), a′)|]|

≤ γmax
s∈S

max
a∈A
|K(s, a)−K(s, a)|

= γ∥K −K∥∞

8We make as additional assumption here that the rewards are strictly positive.
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Q-learning convergence proof

The Q-learning algorithm updates Q at stage k in the following way9

Qk+1(sk, ak) = (1− αk)Qk(sk, ak) + αk(r(sk, ak, wk) + (55)

γmax
a∈A

Qk(f(sk, ak, wk), a)), (56)

Qk representing the estimate of the Q-function at stage k. wk is drawn

independently according to Pw(·).

9The element (sk, ak, rk, sk+1) used to refresh the Q-function at iteration k of the Q-learning

algorithm is “replaced” here by (sk, ak, r(sk, ak, wk), f(sk, ak, wk)).
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By using the H mapping definition (equation (54)), equation (56) can be

rewritten as follows:

Qk+1(sk, ak) = (1− αk)Qk(sk, ak) + αk((HQk)(sk, ak) + ηk) (57)

with

ηk = r(sk, ak, wk) + γmax
a∈A

Qk(f(sk, ak, wk), a)− (HQk)(sk, ak)

= r(sk, ak, wk) + γmax
a∈A

Qk(f(sk, ak, wk), a)−

E
w∼Pw(·|s,a)

[r(sk, ak, w) + γmax
a∈A

Qk(f(sk, ak, w), a)]

which has exactly the same form as equation (49) (Qk corresponding to Rk, H to

G, (sk, ak) to ek and S ×A to E).
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We know that H is a contraction mapping. If the αk(sk, ak) terms satisfy

expression (53), we still have to verify that ηk satisfies expressions (51) and (52),

where

Fk = {Q0, . . . , Qk, (s0, a0), . . . , (sk, ak), α0, . . . , αk, η0, . . . , ηk−1}, (58)

in order to ensure the convergence of the Q-learning algorithm.

We have:

E[ηk|Fk] = E
wk∼Pw(·)

[r(sk, ak, wk) + γmax
a∈A

Qk(f(sk, ak, wk), a)−

E
w∼Pw(·)

[r(sk, ak, w) + γmax
a∈A

Qk(f(sk, ak, w), a)]|Fk]

= 0

and expression (51) is indeed satisfied.
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In order to prove that expression (52) is satisfied, one can first note that :

|ηk| ≤ 2Br + 2γ max
(s,a)∈S×A

Qk(s, a) (59)

where Br is the bound on the rewards. Therefore we have :

η2
k ≤ 4B2

r + 4γ2( max
(s,a)∈S×A

Qk(s, a))
2 + 8Brγ max

(s,a)∈S×A
Qk(s, a) (60)

By noting that

8Brγ max
(s,a)∈S×A

Qk(s, a) < 8Brγ + 8Brγ( max
(s,a)∈S×A

Qk(s, a))
2 (61)

and by choosing A = 8Brγ + 4B2
r and B = 8Brγ + 4γ2 we can write

η2
k ≤ A+B∥Qk∥2∞ (62)

and expression (52) is satisfied. QED
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