Introduction to reinforcement learning

Contributors:
e Damien Ernst (dernst@uliege.be),
e Arthur Louette (arthur.uliege@uliege.be)
e Raphaél Fonteneau (Raphael.Fonteneau@uliege.be)

February 3, 2026

mailto:dernst@uliege.be
mailto:arthur.louette@uliege.be
mailto:Raphael.Fonteneau@uliege.be

Outline

Reinforcement learning: problem statement and challenges

Problem setting and modeling assumptions

Optimal control formulation of reinforcement learning

Tabular reinforcement learning: planning and learning

Function approximation in reinforcement learning

Convergence theory of Q-learning

1/82

Reinforcement learning: problem statement

and challenges

Artificial autonomous intelligent agent: formal definition

Definition ()

An agent is anything that is capable of acting upon information it perceives.

Definition ()
An intelligent agent is an agent capable of making decisions about how it acts
based on experience, that is of learning decision from experience.

Definition ()
An autonomous intelligent agent is an intelligent agent that is free to choose
between different actions.

2/82

Definition (Artificial autonomous intelligent agent)

An artificial autonomous intelligent agent is anything we create that is capable
of actions based on information it perceives, its own experience, and its own
decisions about which actions to perform.

Since “artificial autonomous intelligent agent” is quite mouthful, we follow the
convention of using “intelligent agent” or “autonomous agent” for short.

3/82

Application of intelligent agents

Intelligent agents are applied in a variety of areas: project management,
electronic commerce, robotics, information retrieval, military, networking,

planning and scheduling, etc.

Examples:

e A predictive maintenance agent for industrial equipment that analyzes
sensor data to predict failures before they happen, scheduling maintenance
only when needed and reducing downtime and costs Leroy et al. [2023].

e An autonomous delivery drone system that optimizes delivery routes and
times based on traffic, weather conditions, and customer availability,
learning from each delivery to improve efficiency and customer satisfaction.

e An alignment agent fine-tunes LLMs like ChatGPT, to better match user
intentions. It learns from feedback to improve question interpretation and
ensure accurate, relevant responses. See lecture 11 on RL and LLMs.

e A robotic harvesting assistant that navigates through orchards, using visual
recognition to identify ripe fruits and vegetables. He selects products with
care and precision, minimizing damage and waste. By learning from each
harvest what conditions lead to the best yield and quality it helps farmers

optimize picking schedules. See lecture 10 on robotic RL. o/52

Machine learning and reinforcement learning: definitions

Definition ()
Machine learning is a broad subfield of artificial intelligence which is concerned
with the development of algorithms and techniques that allow computers to

“learn”.

Definition ()

Reinforcement Learning (RL in short) refers to a class of problems in machine
learning which postulate an autonomous agent exploring an environment in
which the agent perceives information about its current state and takes actions.
The environment, in return, provides a reward signal (which can be positive or
negative). The agent has as objective to maximize the (expected) cumulative
reward signal over the course of the interaction.

5/82

Definition (The policy)

The policy of an agent determines the way the agent selects its action based on
the information it has. A policy can be either deterministic or stochastic, either
stationary or time-dependant, either Markov or history-dependant.

Research in reinforcement learning aims at designing policies which lead to large

(expected) cumulative reward.

Where does the intelligence come from? The policies process in an “intelligent
way” the information to select “good actions”.

6,/82

An RL agent interracting with its environment

Environment with
internal state s

Observation
signal o

Action a

Reward
signal r

The reinforcement
learning agent

!Source: Kaufmann et al. [2023]
7/82

Demo

https://www.youtube.com/watch?v=yz2in2eFATE

8/82

https://www.youtube.com/watch?v=yz2in2eFATE

Some generic difficulties with designing intelligent agents

e Inference problem. The environment dynamics and the mechanism behind the
reward signal are (partially) unknown. The policies need to be able to infer from
the information the agent has gathered from interaction with the system, “good

control actions”.

e Computational complexity. The policy must be able to process the history of
the observation within limited amount of computing time and memory.

o Tradeoff between exploration and exploitation.? To obtain a lot of reward, a
reinforcement learning agent must prefer actions that it has tried in the past and
found to be effective in producing reward. But to discover such actions, it has to
try actions that it has not selected before.

2May be seen as a subproblem of the general inference problem. This problem is often
referred to in the “classical control theory” as the dual control problem.

9/82

The agent has to exploit what it already knows in order to obtain reward, but it
also has to explore in order to make better action selections in the future. The
dilemma is that neither exploration nor exploitation can be pursued exclusively
without failing at the task. The agent must try a variety of actions and
progressively favor those that appear to be best. On a stochastic task, each action
must be tried many times to gain a reliable estimate of its expected reward.

e Exploring safely the environment. During an exploration phase (more
generally, any phase of the agent’s interaction with its environment), the agent
must avoid reaching unacceptable states (e.g., states that may for example
endanger its own integrity). By associating rewards of —oco to those states,

exploring safely can be assimilated to a problem of exploration-exploitation.

e Adversarial environment. The environment may be adversarial. In such a
context, one or several other players seek to adopt strategies that oppose the
interests of the RL agent.

10/82

Problem setting and modeling assumptions

Different characterizations of RL problems

e Stochastic (e.g., st+1 = f(s¢, at, w) where the random disturbance w; is
drawn according to the exogenous probability distribution P,(-)) versus
deterministic (e.g., st+1 = f(s¢,a¢))

e Partial observability versus full observability. The environment is said to be
partially (fully) observable if the signal o; describes partially (fully) the

environment’s state s; at time ¢.

e Time-invariant (e.g., si4+1 = f(s¢, a, wy) with wy ~ Py (+)) versus
time-variant (e.g., st+1 = f(s¢, as, we, t)) dynamics.

e Continuous (e.g., $ = f(s,a,w)) versus discrete dynamics (e.g.,

St+1 = f(s¢t,ae,wy)).

e ['inite time versus infinite time of interaction.

11/82

e Multi-agent framework versus single-agent framework. In a multi-agent
framework the environment may be itself composed of (intelligent) agents. A
multi-agent framework can often be assimilated to a single-agent framework
by considering that the internal states of the other agents are unobservable
variables. Game theory and, more particularly, the theory of learning in
games studies situations where various intelligent agents interact with each
other.

e Single state versus multi-state environment. In single state environment,
computation of an optimal policy for the agent is often reduced to the
computation of the maximum of a stochastic function (e.g., find
a* €argmax E [r(a,w)]).

acA w~Pu(')

e Multi-objective reinforcement learning agent (reinforcement learning signal

can be multi-dimensional) versus single-objective RL agent.

e Risk-adverse reinforcement learning agent. The goal of the agent is not
anymore to maximize the expected cumulative reward but to maximize for
example the lowest cumulative reward it could possibly obtain.

12/82

Characterization of the RL problem adopted in this class

e Dynamics of the environment: In the following, we assume that the state of the

RL agent follows a discrete-time dynamics
st+1 = f(st,ae,wy) t=0,1,2...

where f: S x A x W — S models the time-invariant system dynamics which
outputs for any time ¢ € {0,1,...}, state s; from the state space S, any action a;
from the action space A and any random disturbance w,; from the disturbance
space W drawn according to a time-invariant probability distribution w; ~ P, (+),
the next state s;+1 € S.

o Reward signal:

To the transition from ¢ to ¢ + 1 is associated a reward signal v'r; = ~'r(s¢, as, w;)
where 7 : S X A x W — R is a reward function supposed to be bounded by a
constant B, > 0 and 7 € [0, 1] a decay (also called discount) factor.

13/82

Definition (Cumulative reward signal)
Let hy € H be the trajectory from instant time 0 to ¢ in the combined state,
action, reward spaces: h: = (S0, @0, 70, S1,a1,71,...,0t—1,Tt—1,S¢). Let n € I,
be a history-dependent stochastic policy and let us denote by V"(s) the
expected return of a policy 7 (or expected cumulative reward signal) when the
system starts from s = s:

a7

V(s) = lim E Z’ytr(st,at ~n(-|he), we)|so = s
t=0

e Information available:
The agent does not know f, r and P,. The only information it has on these

three elements is the information contained in h;.

For simplicity, in the following of this presentation, we assume that policies are
deterministic, i.e.: Vn € I1,,,Vh € H,n(:|h) = §(n(h)) where ¢ denotes (here) the
Dirac delta function.

14/82

Exercise 1: Computation of the cumulative reward signal

Compute the cumulative reward signal V™ (1) with a constant policy
m(s)=1, VseS.
The state space and action space are respectively defined by:

S={s€{1,2,3,4}}, A={ac{-1,1}}

S=1 S=2 S=3

S

The reward function and the dynamics are the following;:

f(s,a) = (min(max(s + a, 1),4)

1 if f(s,a) =4

r(s,a) =
7 0 otherwise

15/82

Exercise 1: Solution

Solution:

V(1) = lim [r(1,1) +yr(2,1) +9°7(3,1) +7°r(4,1) + ... + 77 r(4,1)]

= lim [A/Q + ...+ fyT]
T—o00

=~ lim [1+4 ... +~7 7?7
T— o0
2
f— /‘/
1=
Reminder:
& 1
li =
e A=
t=0 /

16,/82

Optimal control formulation of reinforcement

learning

Optimal control formulation of reinforcement learning

Theorem (Optimal policy existence)
Let n* € I1,, a policy such that Vh € H,

V" (s) = maxV"(s) (1)

nelly,

Under some mild assumptions® on f, r and P, such a policy n* indeed exists.

e In reinforcement learning, we want to build policies 7" such that v

is as close as possible (according to specific metrics) to 1740

o If f, r and P, were known, we could, by putting aside the difficulty of finding
in IT,, the policy n*, design the optimal agent by solving the optimal control
problem (1). However, V" depends on f, r and P,, which are supposed to be
unknown. = How can we solve this combined inference - optimization problem?

3We will suppose that these mild assumptions are always satisifed afterwards.

17/82

Dynamic Programming (DP) theory reminder: optimality of station-

ary policies

Definition ()

A deterministic stationary Markov control policy p : S — A selects at time ¢
the action a; = p(s:). We denote II,, the set of deterministic stationary Markov
policies. A deterministic stationary Markov policy will output the exact same
value ju(s¢) and ju(sy) as soon as s; = sy, whatever the history and the time.

Definition ()
The expected return of a deterministic stationary Markov policy, when the
system starts from sg = s, is:
N
V#(s) = lim E Z’\/tT‘(St,/L(St,),71)()‘80 =3 . (2)
N—ro0 wo,wiwy | 4=

18/82

History-dependent vs stationary policies

As seen later in the course, because of the Markovian property of the state
dynamics, and the fact that v < 1, an optimal deterministic stationary Markov
policy u* exists, satisfying:

v (s) = maxV*(s),Vs € S.

HET,,

By denoting by 1" an optimal history-dependent policy, one can prove that

VH (s) = V" (s),Vs € S.

= In the infinite horizon, considering only stationary Markov policies

is not suboptimal.

In the following, unless explicitly mentioned, we will consider deterministic
stationary Markov policies only, and denote them using the letter p.

19/82

Truncated return ‘IG

Definition ()
The truncated return of a stationary policy V{; : S — R, when the system starts
from sp = s, is the truncation of the N first terms of the previously defined

expected return:
N—1
Vi (s) = E {Z V' (se, p(se), we)|so = S} , VN2>1. (3)
Wil omocs®RT=i || T=

with Vi(s) = 0.

The truncated return V}j(s) measures the expected sum of discounted reward
over N steps under a given policy © and starting a state s. Note that the
truncated return can also be defined for a time-dependent policy 7:

N-1

Vi (s) = E > A'r(se,m(t,se),w)lso=s|, VN1 (4

WO, W 5., WN —1
Y t=0

20/82

Truncated return ‘IG recursive form

From equation (3), we derive the following theorem:
Theorem (Truncated return V}: recursive form)

The truncated return can be written in a recursive form:

Vi(s)= B [r(s,u(s),w) +7VE_1 (f(s,p(s),w))], VN =1 (5)

wr Py (+)

with Vi'(s) = 0.

Proof: The result is obtained by (i) isolating the first term of the sum in the
definition of Vj in eq. (3), (ii) putting v outside of the sum of the remaining
terms, and (iii) making a variable name change in the time index of the

remaining sum to make V5 | appear. W

21/82

rp

Relation between V# and V,

From equations (2) and (3), we have:

Jim [[V# — Voo 0. (6)
Similarly, we can also write
VH(s) = VE(s) +7V E [V¥(sn)], Vs€S (7)
SN

where sy is a (random) state drawn according to the state probability
distribution obtained when starting from state s and following policy p during N
steps. Assuming that the reward function is bounded by B, = ||r||~ and

v € [0; 1], we can show that there exists an upper bound on the value of V*(s)

Ve < Jim 3 L ®
VH] oo < hm y ‘B, — hm 1B = z 8
— N—oco 1 —7 1—7v
Using (7) and (8), we can show that there exists an upper bound on ||[V* — V{||«

a,l\’(
V¥ — Voo £ =———B,. 9
V" = Vel < 1 ©
Indeed,
r ’)/N
IV* = Vleo <7 IV* 10 = 7= B

22/82

Exercise 2: Computation of the V} function

Compute V}(1), VI(2), V{*(3) and V}*(4) with policy n(s) =1, VseS.
The state space and action space are respectively defined by:

S={s€{1,2,3,4}}, A={ac{-1,1}}

The reward function and the dynamics are the following:

f(s,a) = (min(max(s + a, 1),4)

1 if f(s,a) =4

r(s,a) =
7 0 otherwise

23/82

Exercise 2: Solution

Solution:
Vi (s) = (s, u(s)) +7VE_1(f(s,u(5))), V' (s) =0
V1) =0, Vf(2)=0, V¥@B)=1 V(4 =1
VEQ) =0, V@) =7 V@) =1ty VE@)=1+r
Vi) =97 V@) =+, V@) =VIE4) =1+y+7
VEL) =7+, V@) =7+ +7°, VG =VIA) =1+7+9"+7°

24/82

State-action value function

The V* function evaluates the quality of a policy p. However, in reinforcement
learning, the objective is to find policies that yield high returns. The state-action
value function is a powerful tool for achieving this goal.

Definition (Q"-function)
Given a policy u, we define the state-action value function Q¥ : S x A — R as:

T
Q"(s,a) = lim E thr(st,at,wt)\s() =s,a0 = a,a; = pu(sy) Vt>1 (10)
T— o0

t=0

The function Q* evaluates the expected cumulative return of discounted reward
when starting from state s, taking action a, and then following the policy u
thereafter for an infinite time horizon.

25/82

Truncated state-action value function

In the context of a finite time horizon, we define the truncated state-action value

functions associated with the a policy pu:

Definition ()
We define the functions Q% : S x A — R as the truncation of the NV first terms
of the previously defined state-action value function:

N—-1
Q' (s,a) = E Z Vtr(st,at,wtﬂso =s,a0 = a,ar = p(se) VE>1].

WO, W yee ey WN —1
’ t=0

(11)
with Qf(s,a) = 0.

26/82

Truncated state-action value function: recursive form

From the equation (11), we derive the following theorem:

Theorem (Truncated Q% -function: recursive form)

The Q% —functions S x A — R can also be written using the recurrence
equation:

A=, B [raw) +9Qh . (feawufGew))]. 02

wn Py ()

with Qf (s,a) = 0.

Proof: The result is obtained by (i) isolating the first term of the sum in the
definition of Q% in eq. (11), (ii) putting v outside of the sum of the remaining
terms, and (iii) making a variable name change in the time index of the

remaining sum to make Q% _, appear. W

27/82

Truncated state-action value function for time dependent policies

The truncated state-action value functions can also be defined for a
time-dependent policies 7:

N-1

QN (s,a) = E Z vr(se, at, wi)|so = s, a0 = a,ar = w(t,s:) VE>1].

WO, WLy WN —1
’ ’ t=0

(13)

28/82

Truncated optimal state-action value function

Definition ()
We define the functions Qn : S X A — R by the recurrence equation

Qn(s,a)= E |:7'(S,(L, w) Jr’yn/lgiQN_l(f(s,a, U)),(L/):| , VYN>1 (14)

WPy ()

with Qo(s,a) = 0.

Definition ()
A stationary policy pn is iff it selects an optimal action when there
remains N steps:

pn(s) € arg max Qn(s,a) (15)

29/82

Finite time horizon optimal policy

Theorem (Finite time horizon optimal policy)
Let us define a time-dependent policy 7y : {0,...,N — 1} x & — A as follows:
vVt € {0,...,N —1},Vs € S,n(t,s) = pn_i(s)

€ argmaxQn_¢(s,a)
acA

Choosing an action following wn (t,s) = wy_(s) when there remain exactly
N —t steps is optimal.
Proof: Observe that Vs € S, uj(s) € argmax E [r(s,a,w)] and that, by

SEA wrPy(s)
induction, VN € N,

N-1
Vs € S, pun(s) € arg max E r(s,a,w) + Z ,ytyv(st,pf\,ﬂ(st)7,wt) (16)
ac A W0 WN—1 P

where so = s,a0 = a and ser1 = f(s¢, un_¢(se),we), Ve € {0,..., N —1}. B

30/82

Finite time horizon optimal policy

Corollary

VN € N,¥(s,a) € S x A, Qn(s,a) = Q"N (s, a) (17)

Proof: The result is obtained by replacing uy_,(-) by 7x(t,-) in 16. W

The @ n-functions evaluate the quality of an action a taken in state s,
considering both the immediate reward and the expected discounted rewards
from acting optimally thereafter, up to a finite horizon N.

31/82

A few words about finite-horizon optimality

Be careful! A N-step optimal stationary policy is not an optimal policy for a
finite-time horizon. However, we can define an non-stationary optimal policy
based on multiple N-step optimal stationary policies.

Example: Imagine a robot that would be able to navigate on a straight line.
Starting from an initial state, the robot can either go left and get an
instantaneous +1 reward, or go right 3 times in a row and get a +10 reward. As
soon as the robot reaches states where it receives rewards (+1 or +10), it stays in
these states and continues collecting the same reward.

[5=0 [5=1 j5=2 [5=3 [5=4
Ve
+1 +10

Question: depending on the value of the optimization horizon N, which

direction the robot should take in order to maximize the discounted collected
rewards?

32/82

Exercice 3: Optimal policy in finite time vs infinite time horizon

The state space and action space are respectively defined by:

S={s€{0,1,2,3,4}}, A={aec{-1,1}}

=0 =1 =2 =3 =4
+ g +10
(

The reward function and the dynamics are the following:

f(s,a) = (min(max(s + a,0),4)
10 if f(s,a) =4

r(s,a) =<1 if f(s,a) =0

0 otherwise.

33/82

Exercice 3: Solution

We notice that the optimal policy in finite time will depend on the number of
remaining time steps before the time hozion N is reached:

< (t.5) 1 ifs+(N—t)>4
wn(t,s) =
v —1 otherwise.

That means that the optimal policy is not stationary in finite time as expected.

Whereas in infinite time horizon, the optimal policy is stationary (and does does
not depend on time anymore):

u(s)=1 VseS

34/82

Bellman equation and convergence of @y

Due to their recursive definition, and following the application of the Contraction
Mapping Theorem, the family of @ functions converges to a unique) function.
This @ function is the (unique) fixed-point of the so-called Bellman equation.

Definition ()

We define the Q-function as being the unique solution of the

Q(s,a)= E r(s,a,w) + ymaxQ(f(s,a,w),a’)| . (18)

w~ Py, () a’eA

Theorem ()
The sequence of functions QQn converges to the Q-function in the infinite norm,
se. lim ||Qn — Qo — 0 .

N—oo

35/82

Proof: the two above-mentioned results are direct consequence of the application
of the Contraction Mapping Theorem (also referred to as the Banach fixed-point
Theorem) when considering the mapping F' defined as follows:

F(Q)(s,a) = E r(s,a,w) +’Ygl€a§Q(f(svavw)’a/) (19)

w Py (-

and observing that Qn41(s,a) = F(Qn)(s,a),V(s,a) €S x A. B

The @Q-function evaluates the quality of an action a in state s, considering both
the immediate reward and the expected discounted rewards from acting
optimally thereafter with an infinite time horizon.

36/82

Optimal stationary policy

Theorem (Optimal stationary policy)

A stationary policy i~ defined as

w*(s) € arg maxQ(s,a) (20)
acA

is optimal in the infinite time horizon setting.

Proof: By definition, ;" (s) € arg max, Q(s,a). Thus,

Qsa) = | E [r(s,0,0) QU (s a,0)p (fs,0w)] (1)
— Q" (s,a) (22)
Thus,
maxQ(s,a) = maxQ" (s,a) (23)
= V¥ (s) (24)

37/82

Optimal stationary policy

From Equation 17 given in the previous corollary, one has:

YN € N,¥(s,a) €S x A, Qn(s,a) = Q¥ (s,a) (25)

Thus,
VN € N,¥(s,a) € § x A, maxQn(s,a) = max QN (s,a) (26)
= VaN(s) 27)

Taking the latter equation to the limit, since (@) uniformly converge to one
has:

Vs € s, \}im max @Qn(s,a) = maxQ(s,a) (28)
- 1 ™ (g
= Jim Vy¥(s) (29)

38/82

Optimal stationary policy

From equations (24) and (29), we have that:

Vs €8,V (s) = lim VN (s) (30)
N—oo

The latter equation means that, for any state s, the value of 11" (s) equals the
asymptotical discounted return (when the horizon converges to infinity) of the
optimal finite-horizon (time dependent) optimal policy.

Again, be careful: necessarily, in the infinite horizon setting, the (stationary)
N —step optimal policy py is suboptimal with respect to the (stationary) infinite
horizon policy p*, i.e.,

Vs € 5, V¥ (s) > VN (s) (31)

39/82

Exercise 4: Computation of the @ function

Compute Q4(s,a), V(s,a) €S x A with policy m(s) =1, VseS.
The state space and action space are respectively defined by:

S={se{1,2,3,4}}, A={ac{-1,1}}

The reward function and the dynamics are the following:

f(s,a) = (min(max(s + a, 1),4)

1 if f(s,a) =4

r(s,a) =
7 0 otherwise

40/82

Exercise 4: Solution

Solution:
QN (87 (1,) = T(Sv (Z) + ’YnllgiQNfl (f(9 (l), (1/)7 QO(& (1,) =0
N 1 2 3 4 5
Qn(l,=1) | O 0 0 ~? -y
Qn(1,1) [0 0 o v +7° 7%+ % + 4
Qn(2,-1) | O 0 0 7‘3 A’/d + 'y4
Qn(2,1) [0] v v+9° v+ v+ + +
Qn(B,-1) 0] 0 o A Y+ +4
QnB, L) | 1| 1+y [1+9+9 | 1+7+7*+7° | 1y +2 +7° +7*
Qn(4,-1) 0] v v+ Y+7:+° Y+ + 7+t
Qn4,1) | 1| 1+y | 14+9+9 | 1+7+7 4+ | 1+v+2+°2+7*

41/82

Bound on the suboptimality of V#~

Theorem ()

There exists a bound on the suboptimality of ' in comparison to p*, which is
given by the following inequality:

n . 2vN B,
HV“ || < 2 2 (32)
o~ (1=1)
Proof:
Let consider a environment described by the w, a
fand a r:

V(se,ar) € S X A, si41 = f(se,ar,w) €S, 1 =r(st,ar,w) € R+, wy ~ Py (+)

where S is the state space and A the action space.

42/82

First, notice that the optimal stationary policy p* for an infinite time horizon
may no longer be optimal when there remain exactly N steps.

Recall the time-dependent optimal policies 7 : {0,...,7 — 1} x S — A defined
as:

vt € {0,..., T —1},Vs € S,mn(t,s) = pun_¢(9)

m

arg maxQ@Qn (s, a)
acA

Remember that choosing an action following pn_, when there remain exactly
N —t steps is optimal. We then define recursively

ViN(Gs) = B |r(s,wi(s),w) +AVEN (F(s, piv(s), w)) |, Vs € S (33)

wnr Py (+)

where Voﬂ]*\’(s) =0,Vs €S.

43/82

Note that this policy is no longer stationary, since it depends on time. Therefore,

V;f" (s) > Vﬁ* (s), VseS

By definition:

Vi) = E [r(ams),w) HV*‘(f(s,u(s),w))]

w Py ()

Since 7y is N—step optimal (cf. eq 16), we have:

V6 = B [Vi (o))|
VB [@0+ i 166 0|
Therefore,

Ve) = B[l st (s) w) 4 AVEE (Fls e (5),)
VB (), w) ViR (s i (),)| = VAR (9)

44/82

*

VI (s) = VAR (s) < <PE'){V“*(f(s7u*(S)7w))—Vﬁ”l(f(s,u*(SLw))} +

[Vﬁyfl(f(s,u’&(S),w)) - V“R(f(s,ﬂ}‘v(S),w))D

Py ()

Taking the infinity norm, with s}, = f(s, u*(s), w) and si, = f(s, un(s),w),

IV () = V¥¥ (8)l]oo < ’Y(Ew [V (%) = Vs (st llo

+E., [[[VAYy (st) = V45 (s :moo])

VY =Vl < AIVE = VN oo + Y IVaY) — VAo
AVE = Vi lloo +AIVRN, = VE + VT — VAV ||

IA

2[[V* = Vg¥illeo +9IIV* = VH¥[loo

IN

45/82

Then,
A=V =V < 29IV* VY 1Hoo

. . 2y
[VH —VEN|e < IIV“ — Vi, oo

1—
Since
" _UTN < u* =il _
Vs € S, VH (s) = VTi(s) < VX_i(s)+ KlgnOOZ’YB VN 1(s)
N-1
< Y B
< —
We have:
me F"]‘\] 2’)/ w* ﬂj\,
[V =V < ﬁllV = Vatilles
N-1
< 2y v B
(I-=7) (1-7)
29N B,
(=)
[|

46/82

Value Iteration

The principle of VI is to recursively apply the value update rule:

Update rule

For each state s € S, recursively update the value function:

Viti(s) =max E [r(s,a,w) + Vi (f(s,a,w))]

acA w~Pyy ()

with Vo(s) =0,Vs € S.

Termination: Stops when |Vi11(s) — Vi(s)| < @ for all states for some
predefined criterion ¢ > 0.

Action selection

Select an action maximizing the value:

u(s) € argmax E [r(s,a,w) +yVi(f(s,a,w))]
acA w~Pw (o)

47/82

Policy iteration

PI is a two-step process that alternates between evaluating a fixed policy and
improving it until stability is reached.

Policy Evaluation

Compute V* for the current policy u:

V()= E (s, uls),w) + VL (5 pls), w))]

w~ Py ()

Policy Improvement

Update the policy to be greedy w.r.t. V*:

W)= agmax B [r(s,0w) 9V (f(5,0,0)
a wn w

Termination: If u/(s) = u(s) for all s € S, the algorithm terminates.

48/82

The Value Iteration and Policy Iteration paradigms

As mentioned earlier, RL aims at designing policies which lead to large
(expected) cumulative reward.

Value Iteration (VI) and Policy Iteration (PI) constitute the classical dynamic
programming algorithms and form the conceptual foundation of most modern
reinforcement learning methods.

While VI and PI are originally model-based approaches, they provide the
mathematical blueprints for the two main branches of model-free RL as well
(Value-based and Policy-based methods).

Note that model-free RL has expanded beyond just these two branches. For
instances, there are also model-based RL methods that learn the model.

Actor-Critic methods blur the line between these branches, combining both value
and policy components.

49/82

Taxonomy

REINFORCEMENT LEARNING

MODEL-BASED

Legend: DP=Dynamic Programming, VI=Value Iteration, PI=Policy Iteration, PG=Policy Gradient,
(S)AC=(Soft) Actor-Critic, ES=Evolution Strategie:
Difference, SARSA=State,Action,Reward,State,Action, DQN=Deep Q Network, TRPO=Trust-Region Policy
Optimization,PPO=Proximal Policy Optimization, MCTS=Monte Carlo Tree Search

, Evol=Evolutionary, MC=Monte Carlo, TD=Temporal

50/82

Tabular reinforcement learning: planning and

learning

A pragmatic model-based approach for designing good policies 7*

Inferring from the Computation of a "Randomization" of the
information a stationary policy stationary policy to
model of the which is optimal address the
environment with respect to the exploration-

model exploitation tradeoff.

Select an action a
according to this
randomized policy

We focus first on to the design of functions 7#* which realize sequentially the
following three tasks:

. “System identification” phase. Estimation from h; of an approximate system
dynamics f , an approximate probability distribution P, and an approximate

reward function 7.

51/82

2. Resolution of the optimization problem.

Find in II,, a policy 2* such that Vs € S,V*" (s) = max VHE(s)
pelly

where V# is defined similarly as function V* but with f , P, and 7 replacing f,

P,, and r, respectively.

3. Afterwards, the policy 7 selects with a probability 1 — e(h;) actions according
to the policy 4" and with a probability £(h:) uniformly at random among the
actions. Step 3 has been introduced to address the dilemma between exploration

and exploitation.*

4We will not address further the design of the ’right function’ & : H — [0,1]. In many
applications, it is chosen equal to a small constant (say, 0.05) everywhere.

52/82

Some algorithms for designing 7* when dealing with finite state-action

spaces

e Until say otherwise, we consider the particular case of finite state and action
spaces (i.e., S x A finite).

e When S and A are finite, there exists a vast panel of practical implementable
RL algorithms.

e We focus first on approaches which solve separately Step 1. and Step 2. and
then on approaches which solve both steps together.

e The proposed algorithms infer i* from h;. They can be adapted in a
straigthforward way to episode-based reinforcement learning where a model of ;*
must be inferred from several trajectories hy,, hiy, - ., ht,, With ¢; € No.

53/82

Reminder on Markov Decision Processes

Definition (Markov Decision Process)
A Markov Decision Process (MDP) is defined through the following objects: a
state space S, an action space A, transition probabilities p(s’|s,a) Vs, s’ € S,

a € A and a reward function r(s, a).

e p(s'|s,a) gives the probability of reaching state s” after taking action a while

being in state s.

e We consider MDPs for which we want to find decision policies that maximize

the sum of reward signal 77 (s, a;) over an infinite time horizon.

e MDPs can be seen as a particular type of the discrete-time optimal control
problem introduced earlier.

54/82

MDP Structure Definition from the System Dynamics and Reward

Function

o We define®
r(s,a) = ;]j; ()[r(s, a,w)] Vse€S,ae A (34)
p(sl S, (L) = E ()[I{,ﬁ»/:f(s_’a’w)}] Vs, s’ c S, ac A (35)

e Equations (34) and (35) define the structure of an equivalent MDP in the sense
that the expected return of any policy applied to the original optimal control
problem is equal to its expected return in the MDP.

e The recurrence equation defining the functions @ n can be rewritten:
Qn(s,a) =71(s,a) + 7> csp(s']s, a)maﬁQN,l(s/. a'), VN >1 with
N a’e

Q[)(S, a) = 0.

5 q
“I{iogical_ezpression} = 1 if logical_expression is true and 0 if logical_expression is false.

55/82

Step 1. Inferring the structure of the equivalent MDP

e Inferring a model of the environment translates into learning the parameters
p(s’|s,a) and r(s,a) of the MDP from h; = (S0, @0,70,S1,@1,T1, .+, Qt—1,Tt—1,5t).

e According to equations 34 and 35, learning the dynamics and the rewards
function amounts to estimate the expected value of random variables

Estimation of r(s,a) and p(s’|s, a):
Let X(s,a) ={k €{0,1,...,t —1}|(sk,ar) = (s,a)}. Let k1, k2, ..., kgx(s,a)
denote the elements of the set.® The values 74, , r%,, ..., Thyx(s.a) BT€ #X(s,a)

values of the random variable r(s, a,w) which are drawn independently.

Fyx (o)1} BT€ #X(s,a)
values of the random variable I./—f(s,4,w)}; Which are drawn independently.

Similarly, the values [{S/ZSMJA}, I{-S’:~5).~,2+1}7 200 dlicfi=g

It follows therefore naturally to use the sample mean as unbiased estimator of the
expected values of that to estimate its mean value r(s,a) and p(s’|s,a):

Zk:EX(.sya,) Tk

V(s,a) e Sx A, #(s,a) = 4X (5 a) (36)
S o ZkEX(s,a) I{Skﬂrl:s/}
p(s'|s,a) = #X(s,0) (37)

SIf X is a set of elements, #X denote the cardinality of X. 56/82

Reminder: statistical properties of the sample mean

e Let Xy, Xo,..., be an infinite sequence of independent and identically
distributed (i.i.d.) random variables with finite expected values E[X;] = p, Vi.

e The weak law of large numbers states that given a collection of i.i.d. samples
from a random variable with finite expected value, the sample mean converges in

<s>—1.

e The strong law of large numbers states that the sample mean converges almost

probability to the expected value:

] . 1 n
Ve > 0, ’}LII;PI <‘n 2)(71 — [

surely to the expected value:
RS
. (Jﬁ;n 2 %= “> -

e The strong law is called ”strong” because random variables which converge
strongly (almost surely) are guaranteed to converge weakly (in probability).
However the weak law is known to hold in certain conditions where the strong

law does not hold and then the convergence is only weak (in probability). ,
57/82

Step 2. Computation of /* identification by learning the structure of

the equivalent MPD

e We compute the Qn-functions from the knowledge of # and p by exploiting the

recurrence (‘(]ll%ll ion:

Qn(s,a) = 7(s,a) + Y aegB(S'|s, a)Inai‘(wal(s/, a'), VN >1 with
) a’e
Q[)(s, a) = 0 and then take

iy = arg maXQg\r(s, a) VseS (38)
a€A

as approximation of the optimal policy, with N ”large enough” (e.g., right hand
side of inequality (32) drops below ¢).

e One can show that if the estimated MDP structure lies in an ‘e-neighborhood’

of the true structure, then, V" is in a ‘O(g)-neighborhood’ of V* where

a*(s) = L\;LnioargerriaxQN(s,a).

58/82

The Case of Limited Computational Resources

e Number of operations to estimate the MDP structure grows linearly with ¢.
Memory requirements needed to store h: also grow linearly with ¢ = an agent
having limited computational resources will face problems after certain time of

interaction.

e We describe an algorithm which requires at time ¢ a number of operations that
does not depend on ¢ to update the MDP structure and for which the memory
requirements do not grow with ¢:

At time 0, set N(s,a) =0, N(s,a,s') =0, R(s,a) =0, p(s’|s,a) =0, Vs,s' € S
and a € A.

At time t # 0, do

. N(st—1,a¢—1) < N(St—1,a¢-1) + 1

2. N(st—1,at-1,8t) + N(st—1,at—1,5t) + 1

3. R(st—1,at—1) < R(s¢t—1,at—1) + 1+
|

R(s¢—1,a¢—1)
. r{(St—1,aQ¢t— 5 -
(st-1,at-1) N(st—1,at—1)

5. p(s|si—1,ai-1) % Vs e S

59/82

The Q-learning Algorithm

Idea: merge steps 1 and 2 to learn directly the Q-function.

The @Q-learning algorithm is an algorithm that infers directly from

hy = (50, aop,70,51,1,T1,...,0t—-1,Tt—1, St)
an approximate value of the @)-function, without identifying the structure of a
Markov Decision Process.

The algorithm can be described by the following steps:

I. Initialisation of ch,-mm(.s, a) to 0 everywhere. Set k = 0.
2. Qnemt (Skzq ak,) — (1 - akr)cgcum‘ent(sks al«:) <= ak("'k i "/Ineafi(czcurrent (5k3+17 (l,))

3. k< k+ I’chmm — Qnem . If k =t, return Qmwmt and stop.
Otherwise, go back to 2.

60/82

Q-learning: some remarks

e Iteration 2. can be rewritten as Qneat(Sk, ar) < Qeurrent(Sk, ar) + @rd(Sk, ar)
where the term:

(5(.%., ak) = 7+ ’Yméﬁ(an-mnt(SkJrl 5 (1) - Qr:mw'ent(sm ak)v (39)
called the temporal difference.

e [.ecarning ratio ay: The learning ratio oy, is often chosen constant with k& and

equal to a small value (e.g., o, = 0.05, Vk).

e Consistency of the @Q-learning algorithm: Under some particular conditions on
. g t—1 : t—1 2

the way «ay, decreases to zero (thﬁuolc > ko @k — 0o and thﬁnolc Y koo @k < 00) and

the history h; (when ¢ — oo, every state-action pair needs to be visited an

infinite number of times), Q@ — Q when ¢t — co. (e.g. o = 1)

e [ixperience replay: At each iteration, the @-learning algorihtm uses a sample
Ik = (Sk, Gk, Tk, Sk+1) to update the function Q If rather that to use the finite
sequence of sample lo, l2, ..., l;—1, we use the infinite size sequence l;,, li,, ... to
update in a similar way Q7 where the i; are i.i.d. with uniform distribution on
{0,2,...,t — 1}, then Q converges to the approximate Q-function computed from

the estimated equivalent MDP structure.
61/82

Function approximation in reinforcement

learning

Inferring 4" from h; when dealing with very large or infinite state-

action spaces

e Up to now, we have considered problems having discrete (and not too large)
state and action spaces = * and the O n-functions could be represented in a

tabular form.
e We consider now the case of very large or infinite state-action spaces: functions
approximators need to be used to represent * and the @ n-functions.

e These function approximators need to be used in a way that there are able to
‘well generalize’ over the whole state-action space the information contained in hy.

e There is a vast literature on function approximators in reinforcement learning.
We focus first on one algorithm named ‘fitted () iteration’” which computes the
functions Q\ from h; by solving a sequence of batch mode supervised learning

problems.

62/82

Reminder: Batch mode supervised learning

e A batch mode Supervised Learning (SL) algorithm infers from a set of
input-output (input = information state); (output = class label, real number,
graph, etc) a model which explains “at best” these input-output pairs.

e A loose formalisation of the SL problem: Let I be the input space, O the
output space, = the disturbance space. Let g : / x 2 — O. Let Pe(|i) a
conditional probability distribution over the disturbance space.

We assume that we have a training set 7S = {(i', 0')}27 ¥ such that o’ has been

generated from i' by the following mechanism: draw & € = according to P (-|i")
and then set o' = g(i', £).

From the sole knowledge of TS, supervised learning aims at finding a function

G: [— O which is a ‘good approximation’ of the function g(i) = .]E()[g(/,{)]

63/82

e Typical supervised learning methods are: kernel-based methods, (deep) neural

networks, tree-based methods.

Gender Age Class Survived
Female 22 1 Yes
Male 35 il Yes
Male 16 2 Yes
Female 30 2 No
Male 45 1 No
Male 10 1 Yes
Female 25 1 Yes
Male 60 2 No
Male 18 1 Yes
Female 5 2 Yes
Male 22 2 No
Male 40 1 Yes
Table 1: Titanic Survival Dataset

e Supervised learning highly successful: state-of-the art SL algorithms have been

successfully applied to problems where the input state was composed thousands

of components.

64/82

The fitted () iteration algorithm

e Hitted () iteration computes from h; the functions Ql, QZ, A QN,
approximations of Q1, Qa2, ..., Qn. At step N > 1, the algorithm uses the
function qu together with h; to compute a new training set from which a SL
algorithm outputs Q ~. More precisely, this iterative algorithm works as follows:

First iteration: the algorithm determines a model Q1 of
Qi(s,a)= E ()[7‘(5, a,w)| by running a SL algorithms on the training set:
wr~ Py (-

= {((sk> ar),7r) o (40)

Motivation: One can assimilate S x A to I, R to O, W to E, Py(-) to Pe(:),
r(s,a,w) to g(i,&) and Q1(s,a) to g. From there, we can observe that a SL
algorithm applied to the training set described by equation (40) will produce a
model of Q1.

65/82

[teration N > 1: the algorithm outputs a model QN of

Qn(s,a)= E (>[7"(87 a,w) + fymaﬁQN_l(f(s, a,w),a’)] by running a SL
wn~ Py, (- a’'e

algorithms on the training set:

TS = {((sk,an), Tk + (Ill/l:lﬁ(}\ 1(Sk+1, (1/)}2_:5

Motivation: One can reasonably suppose that On_1isaa sufficiently good
approximation of Qn_1 to be considered equal to this latter function. Assimilate
SxAtol,RtoO, W toZ, Py(:)to Pe(-), r(s,a,w) to g(i,&) and Qn(s,a) to g.
From there, we observe that a SL algorithm applied to the training set described
by equation (41) will produce a model of Qn.

e The algorithm stops when N is ‘large enough’ and /i (s) € argmaxQn (s, a) is
acA

taken as approximation of 1" (s).

66,82

The fitted (@ iteration algorithm: some remarks

e Performances of the algorithm depends on the supervised learning (SL) method
chosen.

e [ixcellent and stable performances have been observed when combined with

supervised learning methods based on ensemble of regression trees and of course,
with deep neural nets, especially when images are used as input.
e Fitted () iteration algorithm can be used with any set of one-step system

transitions (s, at, r¢, St+1) where each one-step system transition gives
information about: a state, the action taken while being in this state, the reward
signal observed and the next state reached.

e Consistency, that is convergence towards an optimal solution when the number
of one-step system transitions tends to infinity, can be ensured under appropriate
assumptions on the SL method, the sampling process, the system dynamics and
the reward function.

67/82

Computation of i*: from an inference problem to a problem of com-

putational complexity

e When having at one’s disposal only a few one-step system transitions, the main

problem is a problem of inference.

e Computational complexity of the fitted () iteration algorithm grows with the
number M of one-step system transitions (s, ax, 7k, Sk+1) (e.g., it grows as
M log M when coupled with tree-based methods).

e Above a certain number of one-step system transitions, a problem of

computational complexity appears.

e In certain situations, one may prefer to rely on algorithms having less inference
capabilities than the ‘fitted @) iteration algorithm’ but which are also less
computationally demanding to mitigate this problem of computational
complexity (e.g., policy gradient algorithms).

68/82

e There is a serious problem plaguing every reinforcement learning algorithm
known as the curse of dimensionality”: whatever the mechanism behind the
generation of the trajectories and without any restrictive assumptions on
f(s,a,w), r(s,a,w), S and A, the number of computer operations required to
determine (close-to-) optimal policies tends to grow exponentially with the
dimensionality of S x A.

e This exponentional growth makes these techniques rapidly computationally
impractical when the size of the state-action space increases.

e Many researchers in reinforcement learning/dynamic programming/optimal
control theory focus their effort on designing algorithms able to break this curse
of dimensionality. Deep neural nets give strong hopes for some classes of

problems.

7A term introduced by Richard Bellman (the founder of the DP theory) in the fifties.

69/82

@-learning with parametric function approximators

Let us extend the Q-learning algorithm to the case where a parametric
Q-function of the form Qg (s, a) is used:

|. Equation (39) provides us with a desired update for Qe(st, at), here:

0(st,a) =1 + 7111'«12(@9(&4_1, a) — Qg(st, at), after observing (s¢, at, 7, S¢+1)-
ac

2. Tt follows the following change in parameters:

Q0 (s¢, ar) .

0 < 60+ ad(se,ar) 50

(41)

70/82

Convergence theory of Q-learning

Contraction mapping

Let B(FE) be the set of all bounded real-valued functions defined on an arbitrary
set E. With every function R : E — R that belongs to B(E), we associate the
scalar:

| Rloc = sup|R(e)]. (42)
ecE

A mapping G : B(E) — B(E) is said to be a contraction mapping if there exists a
scalar p < 1 such that:

IGR— GR'||o < p||[R— R'|l.e VR,R € B(E). (43)

71/82

Fixed point

R* € B(FE) is said to be a fized point of a mapping G : B(E) — B(FE) if:

GR* = R". (44)

If G: B(E) — B(FE) is a contraction mapping then there exists a unique fixed
point of G. Furthermore if R € B(E), then

lim [|G*R — R*||o = 0. (45)

From now on, we assume that:

|. F is finite and composed of n elements

2. G: B(E) — B(F) is a contraction mapping whose fixed point is denoted by R*
3. Re B(E).

72/82

Algorithmic models for computing a fixed point

All elements of R are refreshed: Suppose have the algorithm that updates at
stage k (k > 0) R as follows:

R+ GR. (46)

The value of R computed by this algorithm converges to the fixed point R* of G.
This is an immediate consequence of equation (45).

One element of R is refreshed: Suppose we have the algorithm that selects at
each stage k (k > 0) an element e € E and updates R(e) as follows:

R(e) « (GR)(e) (47)

leaving the other components of R unchanged. If each element e of F is selected
an infinite number of times then the value of R computed by this algorithm
converges to the fixed point R*.

73/82

One element of R is refreshed and noise introduction: Let n € R be a noise
factor and o € R. Suppose we have the algorithm that selects at stage k (k > 0)
an element e € E and updates R(e) according to:

R(e) < (1 —a)R(e) + a((GR)(e) +n) (48)

leaving the other components of R unchanged.

We denote by e, the element of E selected at stage k, by 1, the noise value at
stage k and by Ry the value of R at stage k and by «ay, the value of « at stage k.
In order to ease further notations we set ax(e) = oy if e = ex, and ax(e) =0
otherwise.

With this notation equation (48) can be rewritten equivalently as follows:

Riy1(ex) = (1 — ag)Ri(ex) + ar((GRx)(ex) + i) (49)

74/82

We define the history Fj, of the algorithm at stage k as being:

Fi ={Ro,.-., Ri,€0,. . €k, Q0y .oy Qs N0y -y M1 }-

We assume moreover that the following conditions are satisfied:
1. For every k, we have

E[nk|Fx] = 0.
2. There exist two constants A and B such that V&
E[ni|Fx] < A+ BJ| R | 2

3. The aj(e) are nonnegative and satisfy

[e o]

Zak(e) = 00, Za%(e) < oo0.
k=0

k=0

Then the algorithm converges with probability 1 to R*.

(50)

(53)

75/82

The Q-function as a fixed point of a contraction mapping

We define the mapping H: B(S x A) — B(S x A) such that

(HK)(s,a) = wN;]%}(})[r(s, a,w) + 'ygr/lgﬁ[((f(s, a,w),a’)] (54)

V(s,a) € S x A.

e The recurrence equation (14) for computing the Qn-functions can be rewritten
QN =HQn_1 VN > 1, with Qo(s,a) =0.

e We prove afterwards that H is a contraction mapping. As immediate
consequence, we have, by virtue of the properties algorithmic model (46), that
the sequence of () n-functions converges to the unique solution of the Bellman
equation (18) which can be rewritten: Q = HQ. Afterwards, we proof, by using
the properties of the algorithmic model (49), the convergence of the Q-learning
algorithm.

76/82

H is a contraction mapping

This H mapping is a contraction mapping. Indeed, we have for any functions
K,K € B(S x A):®

HK — HK||oo = a E axK (f(s,a,w),a’) —
| | g N s U C Ry

maﬁ?(f(s. a,w),a’)]|

a’e
< 7 a E ax|K (f(s,a,w),a’) —
S 73 E el K e 6 w), a)
E(f(5,0,w),a)]|
< axmax|K (s,a) — K (s,
= TEREE e s Kl
= K ~ Kl

8We make as additional assumption here that the rewards are strictly positive.

77/82

J)-learning convergence proof

The Q-learning algorithm updates @ at stage k in the following way®

Qr+1(sk,ar) = (1 — ar)Qr(sk, ar) + ak(r(sk, ak, w) + (55)
vfggi(gk(f(SkvakaZUk)aa))v (56)

Q. representing the estimate of the Q-function at stage k. wy is drawn
independently according to Py (-).

9The element (Sk,ak, Tk, sk+1) used to refresh the Q-function at iteration k of the Q-learning
algorithm is “replaced” here by (si,ar,7(sk, ak, wi), f(Sk, ak, wk)).

78/82

By using the H mapping definition (equation (54)), equation (56) can be
rewritten as follows:

Qr+1(8k; ar) = (1 — ar)Qr(sk, ar) + ar(HQx)(sk, ar) + 1k) (57)

with

Mk (8K, 0K, wg) + W%a}Qk(f(Sk, ag,wk),a) — (HQxk)(sk, ax)
= T(Smak,wk)+7{P€aj<@k(f(8k,ak7wk)7a)*

[T(Skv A, ’LU) + 'YIOI’leaj\(Qk(f(skv Ak, w)a a)]

wr Py (+]s,a)

which has exactly the same form as equation (49) (Qx corresponding to Ry, H to
G, (sk,ar) to e, and S x A to E).

79/82

We know that H is a contraction mapping. If the ay (s, ar) terms satisfy
expression (53), we still have to verify that 7, satisfies expressions (51) and (52),
where

‘Fk = {Q07 et '7Qk’ (so’a0)7' M (Sk,(lk),Oé(), ot '7ak77707’ . "nk_1}7 (58)

in order to ensure the convergence of the Q)-learning algorithm.
We have:

E[lng|Fr] = . I%()[T(Skvakywk)+’an€3i‘(Qk(f(sk,ak7wk)va)_
E~EFw(: a

)[T(Sm ag,w) + "/I;IEaXQk(f(Sm ag, w), a)]|Fg]

'll7NPw(.

0

and expression (51) is indeed satisfied.

80/82

In order to prove that expression (52) is satisfied, one can first note that :

|nk| < 2B, + 2y max Qk(s a)
(s,a)eSxA

where B, is the bound on the rewards. Therefore we have :

M <AB? 4 max Qu(s.a)+8By_max Qu(s.a)
(s,a)ESX (s,a)eSx.A

By noting that

8B, ; 8B, + 8B, ,a))?
T e Qk(s,a) < 8B,y + 7((5,51(3?“@;@(8 a))

and by choosing A = 8B, + 4B? and B = 8B, + 47 we can write
2 2

and expression (52) is satisfied. QED

81/82

References and additional readings

References

Pascal Leroy, Pablo G. Morato, Jonathan Pisane, Athanasios Kolios, and Damien
Ernst. Imp-marl: a suite of environments for large-scale infrastructure
management planning via marl, 2023.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller,
Vladlen Koltun, and Davide Scaramuzza. Champion-level drone racing using
deep reinforcement learning. Nature, 620:982-987, 08 2023.

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst.
Reinforcement learning and dynamic programming using function
approximators. CRC press, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I,
volume 4. Athena scientific, 2012.

Csaba Szepesvari. Algorithms for reinforcement learning. Springer Nature, 2022.

82/82

	Reinforcement learning: problem statement and challenges
	Problem setting and modeling assumptions
	Optimal control formulation of reinforcement learning
	Tabular reinforcement learning: planning and learning
	Function approximation in reinforcement learning
	Convergence theory of Q-learning
	References

